Library for modeling molecules and reactions in torch way
Project description
Chytorch [kʌɪtɔːrtʃ]
Library for modeling molecules and reactions in torch way.
Installation
Use pip install chytorch to install release version.
Or pip install . in source code directory to install DEV version.
Pretrained models
Chytorch main package doesn't include models zoo.
Each model has its own named package and can be installed separately.
Installed models can be imported as from chytorch.zoo.<model_name> import Model.
Usage
chytorch.nn.MoleculeEncoder - core graphormer layer for molecules encoding.
API is combination of torch.nn.TransformerEncoderLayer with torch.nn.TransformerEncoder.
Batch preparation:
chytorch.utils.data.MoleculeDataset - Map-like on-the-fly dataset generators for molecules.
Supported chython.MoleculeContainer objects, and PaCh structures.
chytorch.utils.data.collate_molecules - collate function for torch.utils.data.DataLoader.
Note: torch DataLoader automatically do proper collation since 1.13 release.
Example:
from chytorch.utils.data import MoleculeDataset, SMILESDataset
from torch.utils.data import DataLoader
data = ['CCO', 'CC=O']
ds = MoleculeDataset(SMILESDataset(data, cache={}))
dl = DataLoader(ds, batch_size=10)
Forward call:
Molecules coded as tensors of:
-
atoms numbers shifted by 2 (e.g. hydrogen = 3). 0 - reserved for padding, 1 - reserved for CLS token, 2 - extra reservation.
-
neighbors count, including implicit hydrogens shifted by 2 (e.g. CO = CH3OH = [6, 4]). 0 - reserved for padding, 1 - extra reservation, 2 - no-neighbors, 3 - one neighbor.
-
topological distances' matrix shifted by 2 with upper limit. 0 - reserved for padding, 1 - reserved for not-connected graph components coding, 2 - self-loop, 3 - connected atoms.
from chytorch.nn import MoleculeEncoder
encoder = MoleculeEncoder() for b in dl: encoder(b)
Combine molecules and labels:
chytorch.utils.data.chained_collate - helper for combining different data parts. Useful for tricky input.
from torch import stack
from torch.utils.data import DataLoader, TensorDataset
from chytorch.utils.data import chained_collate, collate_molecules, MoleculeDataset
dl = DataLoader(TensorDataset(MoleculeDataset(molecules_list), properties_tensor),
collate_fn=chained_collate(collate_molecules, stack))
Voting NN with single hidden layer:
chytorch.nn.VotingClassifier, chytorch.nn.BinaryVotingClassifier and chytorch.nn.VotingRegressor - speed optimized multiple heads for ensemble predictions.
Helper Modules:
chytorch.nn.Slicer - do tensor slicing. Useful for transformer's CLS token extraction in torch.nn.Sequence.
Data Wrappers:
In chytorch.utils.data module stored different data wrappers for simplifying ML workflows.
All wrappers have torch.utils.data.Dataset interface.
SizedList- list wrapper withsize()method. Useful withtorch.utils.data.TensorDataset.SMILESDataset- on-the-fly smiles tochython.MoleculeContainerorchython.ReactionContainerparser.LMDBMapper- LMDB KV storage to dataset mapper.TensorUnpack,StructUnpack,PickleUnpack- bytes to tensor/object unpackers
Publications
1 Bidirectional Graphormer for Reactivity Understanding: Neural Network Trained to Reaction Atom-to-Atom Mapping Task
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distributions
Filter files by name, interpreter, ABI, and platform.
If you're not sure about the file name format, learn more about wheel file names.
Copy a direct link to the current filters
File details
Details for the file chytorch-1.65-cp311-cp311-win_amd64.whl.
File metadata
- Download URL: chytorch-1.65-cp311-cp311-win_amd64.whl
- Upload date:
- Size: 140.1 kB
- Tags: CPython 3.11, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.11.9
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
9c54339165c9cb01b4792e1bb319b20419ecc6939c8da8e4bbea9d532fd8b45d
|
|
| MD5 |
07604ef9987bf8f3b05117dfc6c4a249
|
|
| BLAKE2b-256 |
99e5a6a024ba40fd1c2a6f82cfc16e61250b6c5a04d53792c860f28f41428ce9
|
File details
Details for the file chytorch-1.65-cp311-cp311-manylinux_2_31_x86_64.whl.
File metadata
- Download URL: chytorch-1.65-cp311-cp311-manylinux_2_31_x86_64.whl
- Upload date:
- Size: 559.5 kB
- Tags: CPython 3.11, manylinux: glibc 2.31+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.11.10
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
745b67045e5cc5885db6567d5990864d2e43405fd15464044b6414fccedb76ae
|
|
| MD5 |
4f67b3541a096d0819591b8be99e624a
|
|
| BLAKE2b-256 |
62ca3698b7a11b38186260ce2555b7b41574384176b13a7e756585404a19ee28
|
File details
Details for the file chytorch-1.65-cp311-cp311-macosx_14_0_arm64.whl.
File metadata
- Download URL: chytorch-1.65-cp311-cp311-macosx_14_0_arm64.whl
- Upload date:
- Size: 222.0 kB
- Tags: CPython 3.11, macOS 14.0+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.11.9
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
546582776d7c9e8be73b03a3e6aa75ca14ec3cbab6bf01ec68c99cf4189d3243
|
|
| MD5 |
64e7793054b261d596d004260f234ab0
|
|
| BLAKE2b-256 |
fac47dd79b6f13e165972973f40c6423203f9c7af11a27140cd8aaa42ab4c327
|
File details
Details for the file chytorch-1.65-cp310-cp310-win_amd64.whl.
File metadata
- Download URL: chytorch-1.65-cp310-cp310-win_amd64.whl
- Upload date:
- Size: 140.0 kB
- Tags: CPython 3.10, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.10.11
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
2826e302ed15d632c925056fdd1186fe53803f9440cf1bdc2003d3d5e898327e
|
|
| MD5 |
396ce4b19d18083d3444349748efba8a
|
|
| BLAKE2b-256 |
97afc68e8fbebfb4719a040c074fb10213656f662b7f2ef44eb0970f41a4a7ed
|
File details
Details for the file chytorch-1.65-cp310-cp310-manylinux_2_31_x86_64.whl.
File metadata
- Download URL: chytorch-1.65-cp310-cp310-manylinux_2_31_x86_64.whl
- Upload date:
- Size: 523.4 kB
- Tags: CPython 3.10, manylinux: glibc 2.31+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.10.15
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
4f7748d996f89f63af3bd6cfb9221eee4e69f961d648b0b6f146ab16086d4c81
|
|
| MD5 |
d99a2dcf29c8546858d9d271f130d854
|
|
| BLAKE2b-256 |
81c6f86fe3858fbba097de2e22c4feb40633a5e809a7dd8275d61c88a96903cb
|
File details
Details for the file chytorch-1.65-cp310-cp310-macosx_14_0_arm64.whl.
File metadata
- Download URL: chytorch-1.65-cp310-cp310-macosx_14_0_arm64.whl
- Upload date:
- Size: 222.3 kB
- Tags: CPython 3.10, macOS 14.0+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.10.11
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
0eea7ddc40bfb9ea1b6437128f2867d9025e37befecf8580754c44acca0b457b
|
|
| MD5 |
7358371ad4b6358a5bde2f0aa0e5c2b7
|
|
| BLAKE2b-256 |
312c7a307b54eaf829d81d9481bc31e4f160178cc3ab26f5c390e61736eecb5c
|
File details
Details for the file chytorch-1.65-cp39-cp39-win_amd64.whl.
File metadata
- Download URL: chytorch-1.65-cp39-cp39-win_amd64.whl
- Upload date:
- Size: 140.5 kB
- Tags: CPython 3.9, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.13
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
600e9f4d8f77fd9fa60e744b4eb6bd84f289cb6fa6df2aee590b83ab1973ea02
|
|
| MD5 |
2eaadca43d36be2d1c404ed18be12fdb
|
|
| BLAKE2b-256 |
6ff2ccb58ebd7a491d737d2e9806bf74208881657945587f76880a4f88e38cf0
|
File details
Details for the file chytorch-1.65-cp39-cp39-manylinux_2_31_x86_64.whl.
File metadata
- Download URL: chytorch-1.65-cp39-cp39-manylinux_2_31_x86_64.whl
- Upload date:
- Size: 526.6 kB
- Tags: CPython 3.9, manylinux: glibc 2.31+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.20
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
27ea7d7b8e1fccea118cbf82c29e30ac0c41a8d33f1174e9ee2fb477f7288d07
|
|
| MD5 |
65f00c50bbf258770cf925395366777c
|
|
| BLAKE2b-256 |
2a4450a76c4c7a5a61c3c4bd8e8742f9818e2c758dc48d0b2407d2e805f6ddfd
|
File details
Details for the file chytorch-1.65-cp39-cp39-macosx_14_0_arm64.whl.
File metadata
- Download URL: chytorch-1.65-cp39-cp39-macosx_14_0_arm64.whl
- Upload date:
- Size: 223.4 kB
- Tags: CPython 3.9, macOS 14.0+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.13
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
cd93d5086a1553c7672979369867c5d11a09c9273771284d700d290390d9c35e
|
|
| MD5 |
417d2ad135a204a19a3e777228e49d0b
|
|
| BLAKE2b-256 |
329a7de93872a8d732660ae9caa7cc0f277537f70d5a12379d14114de9b6b8ce
|
File details
Details for the file chytorch-1.65-cp38-cp38-win_amd64.whl.
File metadata
- Download URL: chytorch-1.65-cp38-cp38-win_amd64.whl
- Upload date:
- Size: 140.7 kB
- Tags: CPython 3.8, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.8.10
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
56c30b2a4809e4003ae896bb9bd8821d4ac8ff429f00bf75581a08ca4f21aed1
|
|
| MD5 |
f89f99980b90fc585ca89389d64c7f2b
|
|
| BLAKE2b-256 |
2bfcae4915f3454fa91d3717cce79711a05f4c0690ec032ada2f2d234f4df64e
|
File details
Details for the file chytorch-1.65-cp38-cp38-manylinux_2_31_x86_64.whl.
File metadata
- Download URL: chytorch-1.65-cp38-cp38-manylinux_2_31_x86_64.whl
- Upload date:
- Size: 540.3 kB
- Tags: CPython 3.8, manylinux: glibc 2.31+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.8.18
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
ac8aa0343944eae55c71e9c7ace1d4e39cb3534eb2f23b409e88e7e46bfc07af
|
|
| MD5 |
519c12cca16ac80c8c14930baabbd992
|
|
| BLAKE2b-256 |
57f9814a5a49f649fbb9c23e6c4f5378f96d9b6372bc499c0963c6869960308f
|
File details
Details for the file chytorch-1.65-cp38-cp38-macosx_14_0_arm64.whl.
File metadata
- Download URL: chytorch-1.65-cp38-cp38-macosx_14_0_arm64.whl
- Upload date:
- Size: 223.3 kB
- Tags: CPython 3.8, macOS 14.0+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.8.10
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
368e6c241db50077708922eeb528a29d0e20038ff63d5a8b3f47d4ec6a4762d8
|
|
| MD5 |
ca96b6899dc4ed6875283abd84ef114c
|
|
| BLAKE2b-256 |
dd3d235c813758f84185863f1aa6ba50ecfce99174f5072fbd91f2453f17b7d1
|