Skip to main content

No project description provided

Project description

logo

A SEG-Y tool developed by Computational Interpretation Group (CIG)

cigsegy is a tool for exchanging data between SEG-Y format and NumPy array inside Python environment.

It can be used to read and convert a SEG-Y format data into a Numpy array, even if the SEG-Y format data is missing some traces or its inline/crossline step is not equal to 1.

It can also be used to create a SEG-Y format data from a Numpy array. In this mode, users can use headers from a existed SEG-Y file or create new headers by setting some parameters.

Tutorial and reference documentation is provided at cigsegy.readthedocs.io. And the source code is always available at github.com/JintaoLee-Roger/cigsegy.

Core Features

  • Fast (Implemented in c++)

  • python wraping and numpy array supports

  • dealing with normal and irregular SEG-Y volume [1].

  • creating a SEG-Y file using the existed header of a SEG-Y

Quick Start

  1. Install cigsegy via PyPi

pip install cigsegy
  1. Print the 3200 bytes textual header of a SEG-Y file

>>> import cigsegy
>>> cigsegy.textual_header('rogan.sgy')
# C01 CLIENT: STUART PETROLEUM LTD    AREA:COOPER BASIN   SOUTH AUSTRALIA
# ...
# C06 INLINE RANGE: 360 - 1684(2)  CROSSLINE RANGE 1764 - 2532(1)
# C07 -------------PROCESSING FLOW---------------
# ...
# C35  DESC                   BYTE LOCATION       FORMAT
# C36  3D INLINE NUMBER        9- 12             32 BIT INTEGER
# C37  3D CROSSLINE  NUMBER   21- 24             32 BIT INTEGER
# C38  CDP_X                  73- 76             32 BIT INTEGER
# C39  CDP_Y                  77- 80             32 BIT INTEGER
# C40

You can get some key information to read the SEG-Y file, such as inline location is 9 (C36), crossline location is 21 (C37), X location is 73 (C38), Y location is 77 (C39), inline step is 2 (C06), crossline step is 1 (C06).

  1. Scan the SEG-Y file and get some meta information

>>> cigsegy.metaInfo('rogan.sgy', iline=9, xline=21, istep=2, xstep=1, xloc=73, yloc=77)
# In python, the shape is (n-inline, n-crossline, n-time) = (663, 769, 1001).

# shape: (n-time, n-crossline, n-inline) = (1001, 769, 663)
# sample interval: 4000, data format code: 4-bytes IBM floating-point
# inline range: 360 - 1684, crossline range: 1764 - 2532
# interval of inline: 35.0, interval of crossline: 17.5, time start: 0
# inline field: 9, crossline field: 21
# inline step: 2, crossline step: 1
# Is regular file (no missing traces): false

You will get some information about this SEG-Y file, such as, the data shape, intervals, data format …

  1. Read the SEG-Y

Please note that the shape is like (n-inlines, n-crosslines, n-time_samples)

>>> d = cigsegy.fromfile('rogan.sgy', iline=9, xline=21, istep=2, xstep=1)
>>> d.shape
# (663, 769, 1001)

If you need a binary file without any headers, i.e., save the numpy array

>>> cigsegy.tofile('rogan.sgy', 'out.dat', iline=9, xline=21, istep=2, xstep=1)
  1. Create a SEG-Y using a numpy array and headers from another SEG-Y file

There is often such a workflow:
  1. Display SEG-Y format data orig.segy in specialized software, such as Petrel.

  2. Use Python code to process this data and obtain new data afterprocess, which is in NumPy array format

  3. To display this processed data in specialized software, it needs to be converted back to SEG-Y format and use the headers from the original data, i.e., using the NumPy array afterprocess and the header of orig.segy to create a new SEG-Y file out.segy.

# assume the iline/xline/istep/xstep of **orig.segy** are 9/21/1/1
>>> cigsegy.create_by_sharing_header('out.segy', 'orig.segy', afterprocess, \
    keylocs=[9, 21])
  1. Create a SEG-Y using a numpy array and some parameters

# d is a numpy array, d.shape == (n-inlines, n-crosslines, n-time)
>>> cigsegy.create('out.segy', d, format=5, start_time=0, iline_interval=15, ...)
  1. Access the SEG-Y file as a 3D numpy array, without reading the whole file into memory

>>> from cigsegy import SegyNP
>>> d = SegyNP('rogan.sgy', keylocs=[9, 21])
>>> d.shape # (ni, nx, nt), use as a numpy array, 3D geometry
>>> sx = d[100] # the 100-th inline profile
>>> sx = d[100:200] # return a 3D array with shape (100, nx, nt)
>>> sx = d[:, 200, :] # the 200-th crossline profile
>>> sx = d[:, :, 100] # the 100-th time slice, note, it may be slow if the file is large
>>> sx.min(), sx.max()
# get the min and max value, but they are evaluated from a part of data,
# so they may not be the real min and max value
>>> sx.ntrace # get the number of traces for the file

License

cigsegy is provided under a MIT license that can be found in the LICENSE file. By using, distributing, or contributing to this project, you agree to the terms and conditions of this license.

TODO

  • Add convenient functions to support unsorted prestack gathers.

Citations

If you find this work useful in your research and want to cite it, please consider use this:

Plain Text

Li, Jintao. "CIGSEGY: A tool for exchanging data between SEG-Y format and NumPy array inside Python environment". URL: https://github.com/JintaoLee-Roger/cigsegy

BibTex

@misc{cigsegy,
author = {Li, Jintao},
title = {{CIGSEGY}: A tool for exchanging data between SEG-Y format and NumPy array inside Python environment},
howpublished = {\url{https://github.com/JintaoLee-Roger/cigsegy}},
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cigsegy-1.2.0.tar.gz (76.3 kB view details)

Uploaded Source

Built Distributions

cigsegy-1.2.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (292.8 kB view details)

Uploaded CPython 3.13tmanylinux: glibc 2.17+ x86-64

cigsegy-1.2.0-cp313-cp313-win_amd64.whl (199.2 kB view details)

Uploaded CPython 3.13Windows x86-64

cigsegy-1.2.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (291.9 kB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ x86-64

cigsegy-1.2.0-cp313-cp313-macosx_11_0_arm64.whl (257.4 kB view details)

Uploaded CPython 3.13macOS 11.0+ ARM64

cigsegy-1.2.0-cp312-cp312-win_amd64.whl (199.1 kB view details)

Uploaded CPython 3.12Windows x86-64

cigsegy-1.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (291.9 kB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64

cigsegy-1.2.0-cp312-cp312-macosx_11_0_arm64.whl (231.6 kB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

cigsegy-1.2.0-cp311-cp311-win_amd64.whl (198.9 kB view details)

Uploaded CPython 3.11Windows x86-64

cigsegy-1.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (292.9 kB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

cigsegy-1.2.0-cp311-cp311-macosx_11_0_arm64.whl (231.4 kB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

cigsegy-1.2.0-cp310-cp310-win_amd64.whl (197.7 kB view details)

Uploaded CPython 3.10Windows x86-64

cigsegy-1.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (291.8 kB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

cigsegy-1.2.0-cp310-cp310-macosx_11_0_arm64.whl (230.3 kB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

cigsegy-1.2.0-cp39-cp39-win_amd64.whl (195.2 kB view details)

Uploaded CPython 3.9Windows x86-64

cigsegy-1.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (291.9 kB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

cigsegy-1.2.0-cp39-cp39-macosx_11_0_arm64.whl (230.4 kB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

cigsegy-1.2.0-cp38-cp38-win_amd64.whl (197.6 kB view details)

Uploaded CPython 3.8Windows x86-64

cigsegy-1.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (291.6 kB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

cigsegy-1.2.0-cp38-cp38-macosx_11_0_arm64.whl (230.2 kB view details)

Uploaded CPython 3.8macOS 11.0+ ARM64

cigsegy-1.2.0-cp37-cp37m-win_amd64.whl (198.1 kB view details)

Uploaded CPython 3.7mWindows x86-64

cigsegy-1.2.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (295.8 kB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ x86-64

cigsegy-1.2.0-cp36-cp36m-win_amd64.whl (198.3 kB view details)

Uploaded CPython 3.6mWindows x86-64

cigsegy-1.2.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (294.3 kB view details)

Uploaded CPython 3.6mmanylinux: glibc 2.17+ x86-64

File details

Details for the file cigsegy-1.2.0.tar.gz.

File metadata

  • Download URL: cigsegy-1.2.0.tar.gz
  • Upload date:
  • Size: 76.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for cigsegy-1.2.0.tar.gz
Algorithm Hash digest
SHA256 7cbb6127a075ad8b610758afd9a89eef5f1b9afcdc4d98d9377a55df826ee675
MD5 1a0211a7d246687b4386d857d77dd17a
BLAKE2b-256 aa5cc916ea65dafacea352d0b391979f4bc9be1f3b3876645f8ea2c6b6021273

See more details on using hashes here.

File details

Details for the file cigsegy-1.2.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for cigsegy-1.2.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8427d313a6ce1888ed2319e86acaff64ec433510d2485642afab5e74ffd04f76
MD5 34a52c1c63307e2f09c31fd7558b5356
BLAKE2b-256 9d2c2133b015dc0d74958f634f4a946ccc88e208ed83ed4549d2d97bc8caf1a1

See more details on using hashes here.

File details

Details for the file cigsegy-1.2.0-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: cigsegy-1.2.0-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 199.2 kB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for cigsegy-1.2.0-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 7a73c79ade002c1ab60c2e18c203f40571001d0bdf7eee85013f46902bef9333
MD5 fabc6eb6940630763182c878630910d4
BLAKE2b-256 8a227eb46d755c622c8f215979db02488f4075306d558e06b055809e262e7724

See more details on using hashes here.

File details

Details for the file cigsegy-1.2.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for cigsegy-1.2.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 11133da9e2ef1e3f222551a6dce797e7a71088a512c7c73e9d5577d4ae3dc069
MD5 f426124ed239e17b38d25a49bd139389
BLAKE2b-256 edad3b659a6414d454ec4e02c7da00529b96a166eea5db643b45e8df1c28708e

See more details on using hashes here.

File details

Details for the file cigsegy-1.2.0-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for cigsegy-1.2.0-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1d7a6c17906b857782c0003205c9cc39cad9e5944593a979ab3fdbd31339debd
MD5 31e0068d04be6ef645c978ff548f0d4d
BLAKE2b-256 beed3fb33cf62cf24e57a279590ce1c54a972b1f55762fbc8dbc40aebe26e233

See more details on using hashes here.

File details

Details for the file cigsegy-1.2.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: cigsegy-1.2.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 199.1 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for cigsegy-1.2.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 28b15157ce7a2e52e0036499c746e03a2071a0525808cefd5bc44e4cd6e1174c
MD5 e63775a8052d669e7d8d7340103915f1
BLAKE2b-256 93c16eee9cd6635037f22c03cf9ed56b3172d4d2ff930aa0507dc3ba06339e3d

See more details on using hashes here.

File details

Details for the file cigsegy-1.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for cigsegy-1.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ea71a0bf6d9fe3b3eb12eb9038e6c3176d3a69996035dee6328291cf9f43e020
MD5 4f69723d3f12b4ae225a4ccfb9f49c47
BLAKE2b-256 d971275081c6f34fce798bbebee2c401580ef250c785c652fc7494d91193ec1f

See more details on using hashes here.

File details

Details for the file cigsegy-1.2.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for cigsegy-1.2.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5566d2cc8b5517da1e4c3a99b06ae9e989c525980da8230808ffabfa8cf7aeed
MD5 69ed2d9a3e68de1ad730639f55c6d065
BLAKE2b-256 b92ca6284569a45e6bd3a07c6debccba0043c5bc23405c275e9472884169c849

See more details on using hashes here.

File details

Details for the file cigsegy-1.2.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: cigsegy-1.2.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 198.9 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for cigsegy-1.2.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 4e909e62ffefe1821cd0ae64951794501d2d20390bf5b15a6918042b2238b66b
MD5 3e369865ddf6ce289c638a4329820e3f
BLAKE2b-256 a7f5ee1dd64901b0773c07d4755b9a9f34343ceed932c65a419331ef4600a08d

See more details on using hashes here.

File details

Details for the file cigsegy-1.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for cigsegy-1.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7d472b8a92ecb7a9462ef7b53b532946ff0e140dec0152c5e2a5e305526bb268
MD5 2aea0a585be882e3ebf62ba5b58fa8fb
BLAKE2b-256 9f70f539dee604d7366f20be9321e29a09f732822a807e758e4387225142cf6d

See more details on using hashes here.

File details

Details for the file cigsegy-1.2.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for cigsegy-1.2.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c0677044d91680156c74fa3242f71c970ccad7eeeab6e3a8ee081b8b0d83bc0a
MD5 1221db720186bbd29e481bbf421f27a8
BLAKE2b-256 5b68fbad043c10af959a79fe5538f6e9fdbf0fcf6ce0ef6bf3fab528b752a882

See more details on using hashes here.

File details

Details for the file cigsegy-1.2.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: cigsegy-1.2.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 197.7 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for cigsegy-1.2.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 ac05f25c1e35f7fefd60708c2a807be3f8fcfbf18f04c5623dda1c22d8fb1fa6
MD5 3e8c6c86c54dbe02131f53964c92f1c5
BLAKE2b-256 b310be202947bc510bc8bafd55559b3b3ff01195b3fde257ac567ab1037d80a0

See more details on using hashes here.

File details

Details for the file cigsegy-1.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for cigsegy-1.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 73cfc70a81cbc8fcb1333ee4e480bbd0c87b968b7e8072758910be403f68a20d
MD5 5e87caf045ca17102f4418639fed9513
BLAKE2b-256 dacf305afd909de711b433825803946c60c4a8ab2ed43a0d074c68179205a9fe

See more details on using hashes here.

File details

Details for the file cigsegy-1.2.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for cigsegy-1.2.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d35316acccf82808e081895cc9921d82dae02319a12afc1609e17297cd3269db
MD5 ce8e8e3de4a712838fc33ffea5543be9
BLAKE2b-256 02b80e128285770edcfa59b70c6eeb97bebdc0f9372691ffb37d375b2bc7374c

See more details on using hashes here.

File details

Details for the file cigsegy-1.2.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: cigsegy-1.2.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 195.2 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for cigsegy-1.2.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 01c162fa3d83e2885f042d9746eeee90b186a5c76a2acf305d42b755a5f1ddf4
MD5 c344e00bf44633c42934b3545f24e678
BLAKE2b-256 a51dc98aeaf863a59ae653cbd65637df4fbf1bc1bab9936f68498f213e4f7097

See more details on using hashes here.

File details

Details for the file cigsegy-1.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for cigsegy-1.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f0e3aad72f50f5ab5b28fc5695e1d41b29dd3451345fdf34a39fcc3337867054
MD5 f393a18b66a9e7c89254ca5e5fdc6597
BLAKE2b-256 961afbe56f5b78947f145e62db5b5887c88ebe7a666ed5ceaa6da6e55983da85

See more details on using hashes here.

File details

Details for the file cigsegy-1.2.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for cigsegy-1.2.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0fc301dcfd20f0009128044e351ef80ccaa2b379d32f3b43ca0e48f7a227599e
MD5 a01140272d301f6dd3e4d2c5a13f86b4
BLAKE2b-256 908cbf60a6aa092d517cbc0bb182136a54bcead83e875981bd26b12da449801f

See more details on using hashes here.

File details

Details for the file cigsegy-1.2.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: cigsegy-1.2.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 197.6 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for cigsegy-1.2.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 7faae5160a214e9f777ffdb0c956652416b9eab1b1e4e12593237550b445d9a3
MD5 8f5dc7cc1453bfd91225da66305a847f
BLAKE2b-256 b0d26f0bf5280bef0f979c9cdf623c31e3387e7d8e101de7d79baa6daca40b96

See more details on using hashes here.

File details

Details for the file cigsegy-1.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for cigsegy-1.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 955ffb0e68006e6e37d3c7c527e795276bb0d73962a9f4eb1bf307d85e528275
MD5 e2ed65e078903e9564b820fcd85eba17
BLAKE2b-256 d13003350798f527e6cb66b4c2cbf3587e49eab168459bf5181a169122a8536d

See more details on using hashes here.

File details

Details for the file cigsegy-1.2.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for cigsegy-1.2.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3d462da7bc22812e3c0fd6e8f2e900a31e464989cde8cf16fa4624696d46dde7
MD5 fd1f21a2b0bdc228177f7ae599122b2a
BLAKE2b-256 6d9c282a4a9e46a2e701c2286315f4f7224d1c629a51ead8137aab85bd136ab2

See more details on using hashes here.

File details

Details for the file cigsegy-1.2.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: cigsegy-1.2.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 198.1 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for cigsegy-1.2.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 f6f6747f170833e7a40cdd895c98a4668186836fdc8caa5d480d09e74e482eae
MD5 2c17f5f74c73346588539c1e040592bb
BLAKE2b-256 e8d9f28ce38d31dfc2d4ffcfffb2647fef58cec4a12d50438cc2a26fc2298db5

See more details on using hashes here.

File details

Details for the file cigsegy-1.2.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for cigsegy-1.2.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 42de994cdf2470d025990d0f86ae49930989b16f56a1503e46f26499363f1e81
MD5 209b8d017420cb190d9882537b8c61ad
BLAKE2b-256 35f39826099bb62cdc6c41106a662f8b2be1e8ca63f962c77b29ee060e541ed3

See more details on using hashes here.

File details

Details for the file cigsegy-1.2.0-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: cigsegy-1.2.0-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 198.3 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for cigsegy-1.2.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 85138e744293ad6ca5916d5eaea1e4ae578649ced9d5fb959aff822fcc774004
MD5 2c76c38507d724943075e6696415e857
BLAKE2b-256 847b751fba81cf7bcde58f0ab66623a733b561bae6fa40faaf52ef0b5d1e1841

See more details on using hashes here.

File details

Details for the file cigsegy-1.2.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for cigsegy-1.2.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bad68efe5b846c8c116d8c02dc3bca8b277ec03df02add9d8e64536397e99b64
MD5 53339310516dc62f868e858d6b05928c
BLAKE2b-256 c069cca9e8c26f4535c9aa7ad487ca266c8ee51315470f64deb55611b9159c52

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page