Skip to main content
Python Software Foundation 20th Year Anniversary Fundraiser  Donate today!

Circle packing algorithm for Python

Project description

PyPi version Python compatibility Build Status Coverage Codacy

circlify

Pure Python implementation of circle packing layout algorithm.

Circles are first arranged with a euristic inspired by the A1.0 of [Huang-2006], then enclosed in a circle created around them using [MSW-1996] algorithm used in [Bostock-2017]. I hope to implement A1.5 at some point in the future but the results are good enough for my use case.

Installation

Using pip:

pip install circlify

or using the source:

git clone git://github.com/elmotec/circlify.git
cd circlify
python setup.py install

The last step may require sudo if you don’t have root access.

Usage

The main function circlify is supported by a small data class circlify.Circle and takes 3 parameters:

  • A list of positive values sorted from largest to smallest.
  • (optional) A target enclosure where the packed circles should fit. It defaults to the unit circle (0, 0, 1).
  • (optional) A boolean indicating if the target enclosure should be appended to the output.

The function returns a list of circlify.Circle whose area is proportional to the corresponding input value.

Example

>>> from pprint import pprint as pp
>>> import circlify as circ
>>> circles = circ.circlify([19, 17, 13, 11, 7, 5, 3, 2, 1], show_enclosure=True)
>>> pp(circles)
[Circle(x=0.0, y=0.0, r=1.0, level=0, ex=None),
 Circle(x=-0.633232604611031, y=-0.47732413442115296, r=0.09460444572843042, level=1, ex={'datum': 1}),
 Circle(x=-0.7720311587589236, y=0.19946176418549022, r=0.13379089020993573, level=1, ex={'datum': 2}),
 Circle(x=-0.43168871955473165, y=-0.6391381648617572, r=0.16385970662353394, level=1, ex={'datum': 3}),
 Circle(x=0.595447603036083, y=0.5168251295666467, r=0.21154197162246005, level=1, ex={'datum': 5}),
 Circle(x=-0.5480911056188739, y=0.5115139053491098, r=0.2502998363185337, level=1, ex={'datum': 7}),
 Circle(x=0.043747233552068686, y=-0.6848366902134195, r=0.31376744998074435, level=1, ex={'datum': 11}),
 Circle(x=0.04298737651230445, y=0.5310431146935967, r=0.34110117996070605, level=1, ex={'datum': 13}),
 Circle(x=-0.3375943908160698, y=-0.09326467617622711, r=0.39006412239133215, level=1, ex={'datum': 17}),
 Circle(x=0.46484095011516874, y=-0.09326467617622711, r=0.4123712185399064, level=1, ex={'datum': 19})]

A simple matplotlib representation. See circlify.bubbles helper function (requires matplotlib):

visualization of circlify circle packing of first 9 prime numbers.

Starting with version 0.10, circlify also handle hierarchical input so that:

>>> from pprint import pprint as pp
>>> import circlify as circ
>>> data = [
        0.05, {'id': 'a2', 'datum': 0.05},
        {'id': 'a0', 'datum': 0.8, 'children': [0.3, 0.2, 0.2, 0.1], },
        {'id': 'a1', 'datum': 0.1, 'children': [
            {'id': 'a1_1', 'datum': 0.05}, {'datum': 0.04}, 0.01],
        },
    ]
>>> circles = circ.circlify(data, show_enclosure=True)
>>> pp(circles)
[Circle(x=0.0, y=0.0, r=1.0, level=0, ex=None),
 Circle(x=-0.5658030759977484, y=0.4109778665114514, r=0.18469903125906464, level=1, ex={'datum': 0.05}),
 Circle(x=-0.5658030759977484, y=-0.4109778665114514, r=0.18469903125906464, level=1, ex={'id': 'a2', 'datum': 0.05}),
 Circle(x=-0.7387961250362587, y=0.0, r=0.2612038749637415, level=1, ex={'id': 'a1', 'datum': 0.1, 'children': [{'id': 'a1_1', 'datum': 0.05}, {'datum': 0.04}, 0.01]}),
 Circle(x=0.2612038749637414, y=0.0, r=0.7387961250362586, level=1, ex={'id': 'a0', 'datum': 0.8, 'children': [0.3, 0.2, 0.2, 0.1]}),
 Circle(x=-0.7567888163564135, y=0.1408782365133844, r=0.0616618704777984, level=2, ex={'datum': 0.01}),
 Circle(x=-0.8766762590444033, y=0.0, r=0.1233237409555968, level=2, ex={'datum': 0.04}),
 Circle(x=-0.6154723840806618, y=0.0, r=0.13788013400814464, level=2, ex={'id': 'a1_1', 'datum': 0.05}),
 Circle(x=0.6664952237042414, y=0.33692908734605553, r=0.21174557028487648, level=2, ex={'datum': 0.1}),
 Circle(x=-0.1128831469183017, y=-0.23039288135707192, r=0.29945345726929773, level=2, ex={'datum': 0.2}),
 Circle(x=0.1563193680487183, y=0.304601976765483, r=0.29945345726929773, level=2, ex={'datum': 0.2}),
 Circle(x=0.5533243963620487, y=-0.23039288135707192, r=0.3667540860110527, level=2, ex={'datum': 0.3})]

A simple matplotlib representation. See circlify.bubbles helper function (requires matplotlib):

visualization of circlify nested circle packing for a hierarchical input.

Note that the area of the circles are proportional to the values passed in input only if the circles are at the same hierarchical level. For instance: circles a1_1 and a2 both have a value of 0.05, yet a1_1 is smaller than a2 because a1_1 is fitted within its parent circle a1 one level below the level of a2. In other words, the level 1 circles a1 and a2 are both proportional to their respective values but a1_1 is proportional to the values on level 2 witin a1.

[Huang-2006]WenQi HUANG, Yu LI, ChuMin LI, RuChu XU, New Heuristics for Packing Unequal Circles into a Circular Container, https://home.mis.u-picardie.fr/~cli/Publis/circle.pdf
[Bostock-2017]Mike Bostock, D3.js, https://beta.observablehq.com/@mbostock/miniball, https://beta.observablehq.com/@mbostock/miniball
[MSW-1996]
  1. Matoušek, M. Sharir, and E. Welzl. A Subexponential Bound For Linear Programming. Algorithmica, 16(4/5):498–516, October/November 1996, http://www.inf.ethz.ch/personal/emo/PublFiles/SubexLinProg_ALG16_96.pdf

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for circlify, version 0.13
Filename, size File type Python version Upload date Hashes
Filename, size circlify-0.13-py2.py3-none-any.whl (10.7 kB) File type Wheel Python version py2.py3 Upload date Hashes View
Filename, size circlify-0.13.tar.gz (10.6 kB) File type Source Python version None Upload date Hashes View

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring DigiCert DigiCert EV certificate Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page