Skip to main content

Clarabel Conic Interior Point Solver for Rust / Python

Project description

Clarabel.jl logo

Interior Point Conic Optimization for Rust and Python

FeaturesInstallationLicenseDocumentation

Clarabel.rs is a Rust implementation of an interior point numerical solver for convex optimization problems using a novel homogeneous embedding. Clarabel.rs solves the following problem:

$$ \begin{array}{r} \text{minimize} & \frac{1}{2}x^T P x + q^T x\\[2ex] \text{subject to} & Ax + s = b \\[1ex] & s \in \mathcal{K} \end{array} $$

with decision variables $x \in \mathbb{R}^n$, $s \in \mathbb{R}^m$ and data matrices $P=P^\top \succeq 0$, $q \in \mathbb{R}^n$, $A \in \mathbb{R}^{m \times n}$, and $b \in \mathbb{R}^m$. The convex set $\mathcal{K}$ is a composition of convex cones.

For more information see the Clarabel Documentation (stable | dev).

Clarabel is also available in a Julia implementation. See here.

Features

  • Versatile: Clarabel.rs solves linear programs (LPs), quadratic programs (QPs), second-order cone programs (SOCPs) and semidefinite programs (SDPs). It also solves problems with exponential, power cone and generalized power cone constraints.
  • Quadratic objectives: Unlike interior point solvers based on the standard homogeneous self-dual embedding (HSDE), Clarabel.rs handles quadratic objectives without requiring any epigraphical reformulation of the objective. It can therefore be significantly faster than other HSDE-based solvers for problems with quadratic objective functions.
  • Infeasibility detection: Infeasible problems are detected using a homogeneous embedding technique.
  • Open Source: Our code is available on GitHub and distributed under the Apache 2.0 License

Installation

Clarabel can be imported to Cargo based Rust projects by adding

[dependencies]
clarabel = "0"  

to the project's Cargo.toml file. To install from source, see the Rust Installation Documentation.

To use the Python interface to the solver:

pip install clarabel

To install the Python interface from source, see the Python Installation Documentation.

Citing

@misc{Clarabel_2024,
      title={Clarabel: An interior-point solver for conic programs with quadratic objectives}, 
      author={Paul J. Goulart and Yuwen Chen},
      year={2024},
      eprint={2405.12762},
      archivePrefix={arXiv},
      primaryClass={math.OC}
}

License 🔍

This project is licensed under the Apache License 2.0 - see the LICENSE.md file for details.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

clarabel-0.11.1.tar.gz (253.9 kB view details)

Uploaded Source

Built Distributions

clarabel-0.11.1-cp39-abi3-win_amd64.whl (887.3 kB view details)

Uploaded CPython 3.9+Windows x86-64

clarabel-0.11.1-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.9+manylinux: glibc 2.17+ x86-64

clarabel-0.11.1-cp39-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.1 MB view details)

Uploaded CPython 3.9+manylinux: glibc 2.17+ ARM64

clarabel-0.11.1-cp39-abi3-macosx_11_0_arm64.whl (935.1 kB view details)

Uploaded CPython 3.9+macOS 11.0+ ARM64

clarabel-0.11.1-cp39-abi3-macosx_10_12_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.9+macOS 10.12+ x86-64

File details

Details for the file clarabel-0.11.1.tar.gz.

File metadata

  • Download URL: clarabel-0.11.1.tar.gz
  • Upload date:
  • Size: 253.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.9.23

File hashes

Hashes for clarabel-0.11.1.tar.gz
Algorithm Hash digest
SHA256 e7c41c47f0e59aeab99aefff9e58af4a8753ee5269bbeecbd5526fc6f41b9598
MD5 5562e936be42ae68bc564999b3c5d728
BLAKE2b-256 81e247f692161779dbd98876015de934943effb667a014e6f79a6d746b3e4c2a

See more details on using hashes here.

File details

Details for the file clarabel-0.11.1-cp39-abi3-win_amd64.whl.

File metadata

  • Download URL: clarabel-0.11.1-cp39-abi3-win_amd64.whl
  • Upload date:
  • Size: 887.3 kB
  • Tags: CPython 3.9+, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.9.23

File hashes

Hashes for clarabel-0.11.1-cp39-abi3-win_amd64.whl
Algorithm Hash digest
SHA256 557d5148a4377ae1980b65d00605ae870a8f34f95f0f6a41e04aa6d3edf67148
MD5 7efd6cae7956238e6b86391c5156e209
BLAKE2b-256 41e64eee3062088c221e5a18b054e51c69f616e0bb0dc1b0a1a5e0fe90dfa18e

See more details on using hashes here.

File details

Details for the file clarabel-0.11.1-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for clarabel-0.11.1-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c8c41aaa6f3f8c0f3bd9d86c3e568dcaee079562c075bd2ec9fb3a80287380ef
MD5 dced91d74b1f4d1f3e2bfeb58e8bbc7f
BLAKE2b-256 6ba9c76edf781ca3283186ff4b54a9a4fb51367fd04313a68e2b09f062407439

See more details on using hashes here.

File details

Details for the file clarabel-0.11.1-cp39-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for clarabel-0.11.1-cp39-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e4837b9d0db01e98239f04b1e3526a6cf568529d3c19a8b3f591befdc467f9bb
MD5 238456e5bf078e8b53e2b34fdba747bd
BLAKE2b-256 2b9e7af10d2b540b39f1a05d1ebba604fce933cc9bc0e65e88ec3b7a84976425

See more details on using hashes here.

File details

Details for the file clarabel-0.11.1-cp39-abi3-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for clarabel-0.11.1-cp39-abi3-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8963687ee250d27310d139eea5a6816f9c3ae31f33691b56579ca4f0f0b64b63
MD5 387519234e18bbc560505916f49a03ba
BLAKE2b-256 b08f13650cfe25762b51175c677330e6471d5d2c5851a6fbd6df77f0681bb34e

See more details on using hashes here.

File details

Details for the file clarabel-0.11.1-cp39-abi3-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for clarabel-0.11.1-cp39-abi3-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 c39160e4222040f051f2a0598691c4f9126b4d17f5b9e7678f76c71d611e12d8
MD5 12366637cab8734e93e872b73017d9f5
BLAKE2b-256 34f7f82698b6d00a40a80c67e9a32b2628886aadfaf7f7b32daa12a463e44571

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page