Skip to main content

CSF: Ground Filtering based on Cloth Simulation

Project description

csf1 csf2

CSF

Airborne LiDAR filtering method based on Cloth Simulation. This is the code for the article:

W. Zhang, J. Qi*, P. Wan, H. Wang, D. Xie, X. Wang, and G. Yan, “An Easy-to-Use Airborne LiDAR Data Filtering Method Based on Cloth Simulation,” Remote Sens., vol. 8, no. 6, p. 501, 2016. (http://www.mdpi.com/2072-4292/8/6/501/htm)

New feature has been implemented:

Now, We has wrapped a Python interface for CSF with swig. It is simpler to use now. This new feature can make CSF easier to be embeded into a large project. For example, it can work with Laspy (https://github.com/laspy/laspy). What you do is just read a point cloud into a python 2D list, and pass it to CSF. The following example shows how to use it with laspy.

# coding: utf-8
import laspy
import CSF
import numpy as np

inFile = laspy.read(r"in.las") # read a las file
points = inFile.points
xyz = np.vstack((inFile.x, inFile.y, inFile.z)).transpose() # extract x, y, z and put into a list

csf = CSF.CSF()

# prameter settings
csf.params.bSloopSmooth = False
csf.params.cloth_resolution = 0.5
# more details about parameter: http://ramm.bnu.edu.cn/projects/CSF/download/

csf.setPointCloud(xyz)
ground = CSF.VecInt()  # a list to indicate the index of ground points after calculation
non_ground = CSF.VecInt() # a list to indicate the index of non-ground points after calculation
csf.do_filtering(ground, non_ground) # do actual filtering.

outFile = laspy.LasData(inFile.header)
outFile.points = points[np.array(ground)] # extract ground points, and save it to a las file.
out_file.write(r"out.las")

Reading data from txt file:

If the lidar data is stored in txt file (x y z for each line), it can also be imported directly.

import CSF

csf = CSF.CSF()
csf.readPointsFromFile('samp52.txt')

csf.params.bSloopSmooth = False
csf.params.cloth_resolution = 0.5

ground = CSF.VecInt()  # a list to indicate the index of ground points after calculation
non_ground = CSF.VecInt() # a list to indicate the index of non-ground points after calculation
csf.do_filtering(ground, non_ground) # do actual filtering.
csf.savePoints(ground,"ground.txt")

How to use CSF in Python

Thanks to @rjanvier's contribution. Now we can install CSF from pip as:

pip install cloth-simulation-filter

How to use CSF in Matlab

see more details from file demo_mex.m under matlab folder.

How to use CSF in R

Thanks to the nice work of @Jean-Romain, through the collaboration, the CSF has been made as a R package, the details can be found in the RCSF repository. This package can be used easily with the lidR package:

library(lidR)
las  <- readLAS("file.las")
las  <- lasground(las, csf())

How to use CSF in C++

Now, CSF is built by CMake, it produces a static library, which can be used by other c++ programs.

linux

To build the library, run:

mkdir build #or other name
cd build
cmake ..
make
sudo make install

or if you want to build the library and the demo executable csfdemo

mkdir build #or other name
cd build
cmake -DBUILD_DEMO=ON ..
make
sudo make install

Windows

You can use CMake GUI to generate visual studio solution file.

Binary Version

For binary release version, it can be downloaded at: http://ramm.bnu.edu.cn/projects/CSF/download/

Note: This code has been changed a lot since the publication of the corresponding paper. A lot of optimizations have been made. We are still working on it, and wish it could be better.

Cloudcompare Pulgin

At last, if you are interested in Cloudcompare, there is a good news. our method has been implemented as a Cloudcompare plugin, you can refer to : https://github.com/cloudcompare/trunk

Related project

A tool named CSFTools has been recently released, it is based on CSF, and provides dem/chm generation, normalization. Please refer to: https://github.com/jianboqi/CSFTools

License

CSF is maintained and developed by Jianbo QI. It is now released under Apache 2.0.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cloth_simulation_filter-1.1.7.tar.gz (84.9 kB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

cloth_simulation_filter-1.1.7-cp312-cp312-win_amd64.whl (128.1 kB view details)

Uploaded CPython 3.12Windows x86-64

cloth_simulation_filter-1.1.7-cp312-cp312-win32.whl (105.8 kB view details)

Uploaded CPython 3.12Windows x86

cloth_simulation_filter-1.1.7-cp312-cp312-musllinux_1_1_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.12musllinux: musl 1.1+ x86-64

cloth_simulation_filter-1.1.7-cp312-cp312-musllinux_1_1_i686.whl (2.1 MB view details)

Uploaded CPython 3.12musllinux: musl 1.1+ i686

cloth_simulation_filter-1.1.7-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64

cloth_simulation_filter-1.1.7-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl (1.5 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ i686

cloth_simulation_filter-1.1.7-cp312-cp312-macosx_11_0_arm64.whl (138.9 kB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

cloth_simulation_filter-1.1.7-cp311-cp311-win_amd64.whl (128.1 kB view details)

Uploaded CPython 3.11Windows x86-64

cloth_simulation_filter-1.1.7-cp311-cp311-win32.whl (105.5 kB view details)

Uploaded CPython 3.11Windows x86

cloth_simulation_filter-1.1.7-cp311-cp311-musllinux_1_1_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.11musllinux: musl 1.1+ x86-64

cloth_simulation_filter-1.1.7-cp311-cp311-musllinux_1_1_i686.whl (2.1 MB view details)

Uploaded CPython 3.11musllinux: musl 1.1+ i686

cloth_simulation_filter-1.1.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

cloth_simulation_filter-1.1.7-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (1.5 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ i686

cloth_simulation_filter-1.1.7-cp311-cp311-macosx_11_0_arm64.whl (138.4 kB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

cloth_simulation_filter-1.1.7-cp310-cp310-win_amd64.whl (128.1 kB view details)

Uploaded CPython 3.10Windows x86-64

cloth_simulation_filter-1.1.7-cp310-cp310-win32.whl (105.5 kB view details)

Uploaded CPython 3.10Windows x86

cloth_simulation_filter-1.1.7-cp310-cp310-musllinux_1_1_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.10musllinux: musl 1.1+ x86-64

cloth_simulation_filter-1.1.7-cp310-cp310-musllinux_1_1_i686.whl (2.1 MB view details)

Uploaded CPython 3.10musllinux: musl 1.1+ i686

cloth_simulation_filter-1.1.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

cloth_simulation_filter-1.1.7-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (1.5 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ i686

cloth_simulation_filter-1.1.7-cp310-cp310-macosx_11_0_arm64.whl (138.4 kB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

cloth_simulation_filter-1.1.7-cp39-cp39-win_amd64.whl (128.3 kB view details)

Uploaded CPython 3.9Windows x86-64

cloth_simulation_filter-1.1.7-cp39-cp39-win32.whl (105.4 kB view details)

Uploaded CPython 3.9Windows x86

cloth_simulation_filter-1.1.7-cp39-cp39-musllinux_1_1_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.9musllinux: musl 1.1+ x86-64

cloth_simulation_filter-1.1.7-cp39-cp39-musllinux_1_1_i686.whl (2.0 MB view details)

Uploaded CPython 3.9musllinux: musl 1.1+ i686

cloth_simulation_filter-1.1.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

cloth_simulation_filter-1.1.7-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (1.5 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ i686

cloth_simulation_filter-1.1.7-cp39-cp39-macosx_11_0_arm64.whl (138.3 kB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

File details

Details for the file cloth_simulation_filter-1.1.7.tar.gz.

File metadata

  • Download URL: cloth_simulation_filter-1.1.7.tar.gz
  • Upload date:
  • Size: 84.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.3

File hashes

Hashes for cloth_simulation_filter-1.1.7.tar.gz
Algorithm Hash digest
SHA256 6e93c7400dd5dc7a94c1d4cb4ac239c0e8e9bde4bcbdd780e8b46bc57828b0b7
MD5 bcda05e608ac798a82e6cb2b20415b29
BLAKE2b-256 70a5d1f38ded4370a36ac3492d7fe96dfa615cf201fa37926de4485041e87ef7

See more details on using hashes here.

File details

Details for the file cloth_simulation_filter-1.1.7-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for cloth_simulation_filter-1.1.7-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 400d7077ab4578396a0b498e3184d4567061fab609856c5c7bfb40a6588795e7
MD5 ea24e2f684b9e02e7a618255161a2b53
BLAKE2b-256 b2df38b0b7545de7c3ac7cbbed415fb8dee32ec7279c82548f19a8f7599034a6

See more details on using hashes here.

File details

Details for the file cloth_simulation_filter-1.1.7-cp312-cp312-win32.whl.

File metadata

File hashes

Hashes for cloth_simulation_filter-1.1.7-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 8fb3454b149257126e2537f4c7e97ff43125c5e0560d71ab879afa2b842e1183
MD5 2564ae0b098563413ee7ae2bdd230332
BLAKE2b-256 80ea391e64fd1628b279554274338a226479b504cea074032c9de3eca2c36466

See more details on using hashes here.

File details

Details for the file cloth_simulation_filter-1.1.7-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for cloth_simulation_filter-1.1.7-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 759348d53f43a62c86b88ee2a93ce5d689469ee7b2f27f1633aeec07798f0f02
MD5 7efa881c39640115404b7cb818847c51
BLAKE2b-256 5b152304b2d0cf9da48bee9ec30fcee677345629524f92f92f7829eb24c7e810

See more details on using hashes here.

File details

Details for the file cloth_simulation_filter-1.1.7-cp312-cp312-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for cloth_simulation_filter-1.1.7-cp312-cp312-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 dade01662ff9bf98914bb5f575b80fdde06c4f2ef1b8822421c979bbc089fad0
MD5 fb92822173109034852b1c8002ace511
BLAKE2b-256 e648ac87e258f51d53987a1379dff997ee6afdb0a0efb2aeb8b066b320810a27

See more details on using hashes here.

File details

Details for the file cloth_simulation_filter-1.1.7-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for cloth_simulation_filter-1.1.7-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fa51801b9696dc9f772701850a1fdc7a83e22725bac5f0f445b5b96a25ea03c2
MD5 43ced3b65a708633e0f2816a329cb8b3
BLAKE2b-256 5614f2217adeda49fc38620dffae12a6fdd41e95268378e01a5e4b18e36db293

See more details on using hashes here.

File details

Details for the file cloth_simulation_filter-1.1.7-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for cloth_simulation_filter-1.1.7-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 5c797c22f4f0a1fef6e6e3667e834ce17fc37f83562ba4c861b0376f8bc87653
MD5 8374afbc8caa7c17d4a9e9c898edf321
BLAKE2b-256 2636da0637feb725abeebebd6e22595f0d0f3b030473cc33e20c32fe30df73c5

See more details on using hashes here.

File details

Details for the file cloth_simulation_filter-1.1.7-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for cloth_simulation_filter-1.1.7-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5db645da68d04efb788a305248ceb18338505039ffdc59d95e5a7d10257f3113
MD5 f169fa961a8d99c81e81b914154942ab
BLAKE2b-256 04bea62a99c21f79d88590a2904352629987ba775e7f80ef0482377f884ad7d8

See more details on using hashes here.

File details

Details for the file cloth_simulation_filter-1.1.7-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for cloth_simulation_filter-1.1.7-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 ec5a37d9e036bfac6eb8343a9b1c8f447f3c840237f06068b6c5c9b2b9bfd05d
MD5 44def10f615d88233c35112078dd8f5d
BLAKE2b-256 2d8a1a0d4bf14986cdc3e6a6682e7df3e264214654a94f341294c30406a87dd3

See more details on using hashes here.

File details

Details for the file cloth_simulation_filter-1.1.7-cp311-cp311-win32.whl.

File metadata

File hashes

Hashes for cloth_simulation_filter-1.1.7-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 2d1851374210607fb2fd30cb0cdcb5b6665500a793ba943d149888055c25f1aa
MD5 b45a034632c5e266b79ff15bfc7879cc
BLAKE2b-256 2ce0de58e07d764e6d8e58fa4690ee52eb722146f53b625bc4b170e08ff71c1e

See more details on using hashes here.

File details

Details for the file cloth_simulation_filter-1.1.7-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for cloth_simulation_filter-1.1.7-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 f3aaf4e8d4b92e9ba827ce0ed12399c380214c2649caff5b997e7f0d63394d23
MD5 518d27898a39c975978f4caabfe1c553
BLAKE2b-256 f46fde4ca9adc0cf9aeb90edd4153615263e70ea42a544509f653261da1ba906

See more details on using hashes here.

File details

Details for the file cloth_simulation_filter-1.1.7-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for cloth_simulation_filter-1.1.7-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 c02644c23f21562a731956b9c72509f158118b0506e6ce85bd87128955052af1
MD5 d9543a92954fd2780b952d317d803798
BLAKE2b-256 9363ed922e90ec6408446b79331b3b2d8e26c4e97fd4c0f0e0811913b227ddcd

See more details on using hashes here.

File details

Details for the file cloth_simulation_filter-1.1.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for cloth_simulation_filter-1.1.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c3daaf66bc0885646d3a912cb995b1f6d5358f4611d029b29c5cc234abb53ed0
MD5 bfa51ac2bfc3fbe4adfc92ab2b329b4a
BLAKE2b-256 7212bf0a5da6488d4ed436c3728e440496b81e860024dac2bb17ccb4a7245396

See more details on using hashes here.

File details

Details for the file cloth_simulation_filter-1.1.7-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for cloth_simulation_filter-1.1.7-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 ab70a9183fc7dda5ccc0a9f9e8db0297abe6aaf959e0bd52cb73d0e16bdc283d
MD5 c00adcec4c341fc91bb4d59419aaf392
BLAKE2b-256 459a61376a463f86a3b0ed128b948ff502d7278f06d8d4250130340e3806954e

See more details on using hashes here.

File details

Details for the file cloth_simulation_filter-1.1.7-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for cloth_simulation_filter-1.1.7-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6f632a90270b0c6dcf14dae0fea20ab68e3d28c86beb79f5e775f54c7eec43a0
MD5 2222f3a6c5bb19dc6eefcf0d6bc6f9d6
BLAKE2b-256 f63d97a3e66774e9e44ef356b0bad2f2820a95d6d535a6f639772991edacea00

See more details on using hashes here.

File details

Details for the file cloth_simulation_filter-1.1.7-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for cloth_simulation_filter-1.1.7-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 7b008376681aaf5a5cb59b853061c0cd0f439a693359dda688f24480c5641783
MD5 59d2a10819ba4c2b62d014f78d0d9fc1
BLAKE2b-256 c52b39197c714b515aa28ad419047b1fea852af5895fadb78c84f96fdbde8bb1

See more details on using hashes here.

File details

Details for the file cloth_simulation_filter-1.1.7-cp310-cp310-win32.whl.

File metadata

File hashes

Hashes for cloth_simulation_filter-1.1.7-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 2e43172a01c83b88add29b8df02e72d15b93657c5c27d48609ea6b15bd04d770
MD5 14ad8e8cfdcd1bdacc240cea5f4b5333
BLAKE2b-256 6c453adf583d0aeaaae17973bb4e3d572c6318c1aafb7a13259692540cfe5a35

See more details on using hashes here.

File details

Details for the file cloth_simulation_filter-1.1.7-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for cloth_simulation_filter-1.1.7-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 c6e45963609f1d58820ef1fa251d9aaeb52625c75be8e792215464da081ceed1
MD5 f8315e80e9d7f509d959630bb2f6f555
BLAKE2b-256 e30092f72cd7600e099c7e7b684c73941356794358c690da967993b77a576e06

See more details on using hashes here.

File details

Details for the file cloth_simulation_filter-1.1.7-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for cloth_simulation_filter-1.1.7-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 a5f12392579d51bcc4005dd8270ae258e27ed2e2f749e90199dddead63eb1dcb
MD5 1a1cce086e4bc9b35a897e3b44c4cc45
BLAKE2b-256 7904debf6142bea4554395e8843c1725c82924e137ef201cfdcb01a6b3b64086

See more details on using hashes here.

File details

Details for the file cloth_simulation_filter-1.1.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for cloth_simulation_filter-1.1.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7456e468a356dc4efc5ed0f911b4d96318abbd80ac0f13494ba836f9720bcf39
MD5 a7c2ee9f8b0aa0674bf0d06d60e7932e
BLAKE2b-256 7b8937a447fdc8fb38d0554f8380d50b5f2ea8749ba9ec3d234f9ae84b9a68a0

See more details on using hashes here.

File details

Details for the file cloth_simulation_filter-1.1.7-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for cloth_simulation_filter-1.1.7-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 e8899ef1aa60752fde52eb099fc70dbb1468fdf21f36c5e23b96493577369802
MD5 ddcdcac3340b5d5843a3e63ed3e6a612
BLAKE2b-256 cfc41cf64ff63f9fa506194c10b80205b38d6027ba00196d736a3005b1e1025b

See more details on using hashes here.

File details

Details for the file cloth_simulation_filter-1.1.7-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for cloth_simulation_filter-1.1.7-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7a353280704dbd29d6e275f5273f01d5b33a6fad810ed603da9540243980c451
MD5 0d19c9dbe11a0240412e17907381a149
BLAKE2b-256 9e7c5e6a876e0494a220023465270d8a89a87a0d4074082733e3011821e6eda5

See more details on using hashes here.

File details

Details for the file cloth_simulation_filter-1.1.7-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for cloth_simulation_filter-1.1.7-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 2205074bcd95c098cfc8901d2b0adcdabba4def913e76bfed9b3c1d793eb6dfe
MD5 8bd43a387f34beecc2dc9b9ec62e94b5
BLAKE2b-256 6ebc7bbfceb0216701859f747d0e23d910e9f9a075ee71ece8902e29e21df498

See more details on using hashes here.

File details

Details for the file cloth_simulation_filter-1.1.7-cp39-cp39-win32.whl.

File metadata

File hashes

Hashes for cloth_simulation_filter-1.1.7-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 1a8fd8f47bf2bbf8407515b3bdfd7c8dfc65d9f89d17719f2a1d968250d0cab8
MD5 dc1d6b27f66c93a98ef565f5c69d4c0a
BLAKE2b-256 6a6e1de05aed053665e6243ba9d6cbad47f207648a56e3a7a66e21f40b28990d

See more details on using hashes here.

File details

Details for the file cloth_simulation_filter-1.1.7-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for cloth_simulation_filter-1.1.7-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 73df641fd98c748cf43bae9bf297e215289d573de31564059f80e62ae6feb804
MD5 f6c59c37fb44287cc6b106f6cae264fd
BLAKE2b-256 7a872a393759461ce4b22afff4bc4313241fd334220b7de4ec4d0b312a0a3afd

See more details on using hashes here.

File details

Details for the file cloth_simulation_filter-1.1.7-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for cloth_simulation_filter-1.1.7-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 c5b6f4b6dbbe308450949ca32f4892be507ca0edbffaa6da7a998ff2da7f902c
MD5 8caffe49fa0028841dcfd236e5cf26d0
BLAKE2b-256 5e5be941777a9682f4a99a02076017c1290284c7d16206f3c1e1bbce4209410c

See more details on using hashes here.

File details

Details for the file cloth_simulation_filter-1.1.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for cloth_simulation_filter-1.1.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cf0497da1dbed2025dee99272958540473c30a4fa53edfd0eeff13a6e5d51a8c
MD5 25cf43868ba27502abb852416b9e3428
BLAKE2b-256 0de28bcebc7fbac999cbf8d98c3b6d4a5aff4dee5dc78a65f23c8513327200db

See more details on using hashes here.

File details

Details for the file cloth_simulation_filter-1.1.7-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for cloth_simulation_filter-1.1.7-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 22a7c8680e8cd8dd0bfae05410843389e869d4cc11c620c3ade1d68a55c0cf5a
MD5 c019a85f7091a2c7e33039125eb76378
BLAKE2b-256 b9e249589c1758c40d2bdf19ff6843cd9002f549c5557b13da8a386b0d534a58

See more details on using hashes here.

File details

Details for the file cloth_simulation_filter-1.1.7-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for cloth_simulation_filter-1.1.7-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 341085425198f8fa13143aeb4f26cabc07b0d02a0743231180b28c15bffe7ca8
MD5 2f22772aeba2dcb51e160872e42c8858
BLAKE2b-256 f334660b494226e2acf8ad4b08428df51558288ed1868ba5da730a21e1019959

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page