Skip to main content

COCO dataset loader.

Project description

coco-loader

COCO dataset loader. Provides serializable native Python bindings for several COCO dataset formats.

Supported bindings and their corresponding modules:

  • Object Detection: objectdetection
  • Keypoint Detection: keypointdetection
  • Panoptic Segmentation: panopticsegmentation
  • Image Captioning: imagecaptioning

Installation

coco-loader is available on PyPI:

pip install coco-loader

Usage

Creating a dataset (Object Detection)

>>> from coco_loader.common import Info, Image, License
>>> from coco_loader.objectdetection import ObjectDetectionAnnotation, \
...                                      ObjectDetectionCategory, \
...                                      ObjectDetectionDataset
>>> from datetime import datetime
>>> info = Info(  # Describe the dataset
...    year=datetime.now().year,
...    version='1.0',
...    description='This is a test dataset',
...    contributor='Test',
...    url='https://test',
...    date_created=datetime.now()
... )
>>> mit_license = License(  # Set the license
...     id=0,
...     name='MIT',
...     url='https://opensource.org/licenses/MIT'
... )
>>> images = [  # Describe the images
...     Image(
...         id=0,
...         width=640, height=480,
...         file_name='test.jpg',
...         license=mit_license.id,
...         flickr_url='',
...         coco_url='',
...         date_captured=datetime.now()
...     ),
...     ...
... ]
>>> categories = [  # Describe the categories
...     ObjectDetectionCategory(
...         id=0,
...         name='pedestrian',
...         supercategory=''
...     ),
...     ...
... ]
>>> annotations = [  # Describe the annotations
...     ObjectDetectionAnnotation(
...         id=0,
...         image_id=0,
...         category_id=0,
...         segmentation=[],
...         area=800.0,
...         bbox=[300.0, 100.0, 20.0, 40.0],
...         is_crowd=0
...     ),
...     ...
... ]
>>> dataset = ObjectDetectionDataset(  # Create the dataset
...     info=info,
...     images=images,
...     licenses=[mit_license],
...     categories=categories,
...     annotations=annotations
... )
>>> dataset.save('test_dataset.json', indent=2)  # Save the dataset

Loading a dataset

>>> from coco_loader.objectdetection import ObjectDetectionDataset
>>> dataset = ObjectDetectionDataset.load('test_dataset.json')  # Load the dataset

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

coco_loader-0.1.1.tar.gz (4.3 kB view details)

Uploaded Source

Built Distribution

coco_loader-0.1.1-py3-none-any.whl (5.5 kB view details)

Uploaded Python 3

File details

Details for the file coco_loader-0.1.1.tar.gz.

File metadata

  • Download URL: coco_loader-0.1.1.tar.gz
  • Upload date:
  • Size: 4.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.2.2 CPython/3.9.14 Darwin/21.2.0

File hashes

Hashes for coco_loader-0.1.1.tar.gz
Algorithm Hash digest
SHA256 e6ac195d29e54c9ffa5d9e639a8dbf8e7ccf07631f79e59e78835263013f8db5
MD5 ecfdc741d5c86524627f5bc485376ff4
BLAKE2b-256 cb6f19cc2a77d7e44ee01e52ec139a1a1e5e2a47e919d4394546875d752f1da5

See more details on using hashes here.

File details

Details for the file coco_loader-0.1.1-py3-none-any.whl.

File metadata

  • Download URL: coco_loader-0.1.1-py3-none-any.whl
  • Upload date:
  • Size: 5.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.2.2 CPython/3.9.14 Darwin/21.2.0

File hashes

Hashes for coco_loader-0.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 d04df8bb3fad8747ec98e145632adb5af7f2cd16f2548f200634bf2e8f0991f1
MD5 9ef3636722d17c6cbe4f64d0d6a767ac
BLAKE2b-256 7ceffb31d03ff7912576bf4944d35524868ef3cf831d94053ad9b2185c94e78c

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page