Skip to main content

COG modules

Project description

CogFlow

Cogflow module sets up a pipeline for handling datasets and machine learning models using multiple plugins. It includes functions for creating, registering, evaluating, and serving models, as well as managing datasets.

Key components include:

Mlflow Plugin: For model tracking, logging, and evaluation. Kubeflow Plugin: For pipeline management and serving models. Dataset Plugin: For dataset registration and management. Model Plugin: For saving model details. Configurations: Constants for configuration like tracking URIs, database credentials, etc.

Key Functions:

Model Management

register_model: Register a new model. log_model: Log a model. load_model: Load a model. delete_registered_model: Delete a registered model. create_registered_model: Create a new registered model. create_model_version: Create a new version of a registered model.

Run Management

start_run: Start a new. end_run: End the current. log_param: Log a parameter to the current run. log_metric: Log a metric to the current run.

Evaluation and Autologging

evaluate: Evaluate a model. autolog: Enable automatic logging of parameters, metrics, and models.

Search and Query

search_registered_models: Search for registered models. search_model_versions: Search for model versions. get_model_latest_version: Get the latest version of a registered model. get_artifact_uri: Get the artifact URI of the current or specified run.

Dataset Management

link_model_to_dataset: Link a model to a dataset. save_dataset_details: Save dataset details. save_model_details_to_db: Save model details to the database.

Pipeline and Component Management

pipeline: Create a new Kubeflow pipeline. create_component_from_func: Create a Kubeflow component from a function. client: Get the Kubeflow client. load_component_from_url: Load a Kubeflow component from a URL.

Model Serving

serve_model_v1: Serve a model using Kubeflow V1. serve_model_v2: Serve a model using Kubeflow V2. get_model_url: Get the URL of a served model. delete_served_model: Delete a served model.

MinIO Operations

create_minio_client: Create a MinIO client. query_endpoint_and_download_file: Query an endpoint and download a file from MinIO. save_to_minio: Save file content to MinIO. delete_from_minio: Delete an object from MinIO.

Dataset Registration

register_dataset: Register a dataset.

Getting Started

To begin, import cogflow from the CogFlow module:

import cogflow

Explore the Capabilities of cogflow

  • List Attributes and Methods: Understand the cogflow module better with:

    print(dir(cogflow))
    
  • Get Documentation: For a comprehensive guide on the cogflow, use:

    help(cogflow)
    

Environment Variables

To maximize the functionality of CogFlow, set the following environment variables:

  • Mlflow Configuration:

    • MLFLOW_TRACKING_URI: The URI of the Mlflow tracking server.
    • MLFLOW_S3_ENDPOINT_URL: The endpoint URL for the AWS S3 service.
    • ACCESS_KEY_ID: The access key ID for AWS S3 authentication.
    • SECRET_ACCESS_KEY: The secret access key for AWS S3 authentication.
  • Machine Learning Database:

    • ML_DB_USERNAME: Username for connecting to the machine learning database.
    • ML_DB_PASSWORD: Password for connecting to the machine learning database.
    • ML_DB_HOST: Host address for the machine learning database.
    • ML_DB_PORT: Port number for the machine learning database.
    • ML_DB_NAME: Name of the machine learning database.
  • CogFlow Database:

    • COGFLOW_DB_USERNAME: Username for connecting to the CogFlow database.
    • COGFLOW_DB_PASSWORD: Password for connecting to the CogFlow database.
    • COGFLOW_DB_HOST: Host address for the CogFlow database.
    • COGFLOW_DB_PORT: Port number for the CogFlow database.
    • COGFLOW_DB_NAME: Name of the CogFlow database.
  • MinIO Configuration:

    • MINIO_ENDPOINT_URL: The endpoint URL for the MinIO service.
    • MINIO_ACCESS_KEY: The access key for MinIO authentication.
    • MINIO_SECRET_ACCESS_KEY: The secret access key for MinIO authentication.

By setting the environment variables correctly, you can fully utilize the features and functionalities of the CogFlow framework for your cognitive and machine learning tasks.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cogflow-1.13.1.tar.gz (96.5 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

cogflow-1.13.1-py3-none-any.whl (105.7 kB view details)

Uploaded Python 3

File details

Details for the file cogflow-1.13.1.tar.gz.

File metadata

  • Download URL: cogflow-1.13.1.tar.gz
  • Upload date:
  • Size: 96.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.9.2rc1

File hashes

Hashes for cogflow-1.13.1.tar.gz
Algorithm Hash digest
SHA256 cedb97c2cd8214471e1a6bc940cc891a5bcbe5e430411cb04e2d1a06f61519e2
MD5 7cf4aa461b95ad0f31be4336ab79558e
BLAKE2b-256 ae71f8154ffcdd9dae71cf609558de5ef74cd0a3be9a9842c6a791366f87b1fd

See more details on using hashes here.

File details

Details for the file cogflow-1.13.1-py3-none-any.whl.

File metadata

  • Download URL: cogflow-1.13.1-py3-none-any.whl
  • Upload date:
  • Size: 105.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.9.2rc1

File hashes

Hashes for cogflow-1.13.1-py3-none-any.whl
Algorithm Hash digest
SHA256 cb47b17cd996f71e8218059f37deca2903e62f5613bbfaa2a9c7306766d02f27
MD5 336bb149ad2c9d42de56ed03674e7227
BLAKE2b-256 9e5f0af6b1f4f0a53cbb18c9fe7c7b2ee858c60f404636a42971ce67da141be2

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page