Skip to main content

Работа с сервисом "dadata.ru": запросы, обработка, итд

Project description

DaData Commercito

Пакет для работы с сервисом "dadata.ru".
Его удобно использовать совместно с пакетом "comto-core".

Использование

Поиск адресов

from comto_dadata import address

token = 'your-token'
secret = 'your-secret'

print(address.suggest(token, 'москва твер'))
print(address.geocoding(token, secret, "москва сухонская 11"))
print(address.geocoding_reverse(token, '55.878', '37.653'))
print(address.by_ip(token, '46.226.227.20'))
print(address.by_fias(token, '9120b43f-2fae-4838-a144-85e43c2bfb29'))
print(address.postal_unit(token, 'дежнева 2а'))
print(address.delivery_uid(token, '3100400100000'))
print(address.dict_by_fias(token, '9120b43f-2fae-4838-a144-85e43c2bfb29'))
print(address.country(token, 'DE'))

Поиск компаний

from comto_dadata import company

payload = {
    'query': 'Иванов Александр',
    'count': 20,
    'status': ["ACTIVE"],
    'locations': [{"kladr_id": "1300000100000"}],
}

response = company.suggest('your-token', payload)

Справочники

from comto_dadata import handbook

okved = handbook.okved('your-token', '51.22.3')
okpd = handbook.okpd('your-token', '95.23.10.133')

Личный кабинет

from comto_dadata import profile

stat = profile.stat('your-token', 'your-secret')
balance = profile.balance('your-token', 'your-secret')
version = profile.version('your-token')

Парсинг ответа сервиса

А. Поиск компании

import json
from comto_dadata import company
from comto_dadata import parse

response = company.by_inn('your-token', '1327048147')
response = json.loads(response)

items = response.get('suggestions')

if len(items):
    for item in items:
        person = parse.company(item)
        print(person)

Пример результата парсинга ответа

{
  "inn": "1327048147",
  "fio": "Иванов Иван Иванович",
  "type": "LEGAL",
  "name": "ПУБЛИЧНОЕ АКЦИОНЕРНОЕ ОБЩЕСТВО \"ЗАСТРОЙЩИК \"ДОМОСТРОИТЕЛЬНЫЙ КОМБИНАТ\"",
  "district": "Приволжский",
  "region": "Респ Мордовия",
  "kladr_region": "1300000000000",
  "city": "г Саранск",
  "kladr_city": "1300000100000",
  "employee": 78,
  "okved": "41.20",
  "okveds": "41.20, 01.41, ..., 85.42"
}

Б. Поиск адреса

import json
from comto_dadata import address
from comto_dadata import parse

# search = 'г Ярославль, ул Гагарина, д 12'
search = 'Ярославская обл, деревня Кузнечиха, ул Центральная, д 37'

response = address.suggest('your-token', search)
response = json.loads(response)

items = response.get('suggestions')

if len(items):
    for item in items:
        place = parse.address(item)
        print(place)

Пример результата парсинга ответа

{
  "address_full": "150023, Ярославская обл, г Ярославль, ул Гагарина, д 12",
  "geo_lat": "57.588718",
  "geo_lon": "39.844613",
  "postal_code": "150023",
  "federal_district": "Центральный",
  "region_fias_id": "a84b2ef4-db03-474b-b552-6229e801ae9b",
  "region_kladr_id": "7600000000000",
  "place_fias_id": "6b1bab7d-ee45-4168-a2a6-4ce2880d90d3",
  "place_kladr_id": "7600000100000",
  "street_fias_id": "b53a43d6-5cea-448c-bc2b-e360a8561ae0",
  "street_kladr_id": "76000001000014700",
  "house_fias_id": "f30de2da-9115-4eef-a887-0ea1b6d34ff2",
  "house_kladr_id": "7600000100001470030",
  "fias_id": "f30de2da-9115-4eef-a887-0ea1b6d34ff2",
  "fias_code": "76000001000000001470030",
  "kladr_id": "7600000100001470030"
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

comto_dadata-4.1.2.tar.gz (8.3 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

comto_dadata-4.1.2-py3-none-any.whl (9.8 kB view details)

Uploaded Python 3

File details

Details for the file comto_dadata-4.1.2.tar.gz.

File metadata

  • Download URL: comto_dadata-4.1.2.tar.gz
  • Upload date:
  • Size: 8.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.24.0 setuptools/51.1.1 requests-toolbelt/0.9.1 tqdm/4.55.0 CPython/3.8.3

File hashes

Hashes for comto_dadata-4.1.2.tar.gz
Algorithm Hash digest
SHA256 e29c2b69de49d11338bc8325290d3bac2ae40c36e3f7d50cd1f8b42adc3d8bee
MD5 7e17e8759eebaf54b1f55dd184d533ac
BLAKE2b-256 958b06b57ea2eb8ee306d481c80ababcf136d7fa31d49819d15e113ae88e1589

See more details on using hashes here.

File details

Details for the file comto_dadata-4.1.2-py3-none-any.whl.

File metadata

  • Download URL: comto_dadata-4.1.2-py3-none-any.whl
  • Upload date:
  • Size: 9.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.24.0 setuptools/51.1.1 requests-toolbelt/0.9.1 tqdm/4.55.0 CPython/3.8.3

File hashes

Hashes for comto_dadata-4.1.2-py3-none-any.whl
Algorithm Hash digest
SHA256 c3bab4344bea27a8fe007a377b87eaaa62dc02291fddee3c19bcd1df6e3680b2
MD5 17651a45cac402c070b525defcf665cd
BLAKE2b-256 f963ac0ec5783293639ad1017af7a38d395e4a165b34a6e5bd12f433b1ad1488

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page