A very fast 2D concave hull algorithm
Project description
concave_hull
A very fast 2D concave hull algorithm.
Credits goes to:
Online document: https://concave-hull.readthedocs.io/en/latest/
Install
via pip
pip install -U concave_hull
from source
git clone --recursive https://github.com/cubao/concave_hull
pip install ./concave_hull
Or
pip install git+https://github.com/cubao/concave_hull.git
(you can build wheels for later reuse by pip wheel git+https://github.com/cubao/concave_hull.git
)
Usage
Signature:
# import
from concave_hull import concave_hull, concave_hull_indexes
# get concave hull indexes
concave_hull_indexes(
points: Union[numpy.ndarray, List, Tuple],
*,
concavity: float = 2.0,
length_threshold: float = 0.0,
# you can just ignore "convex_hull_indexes"
convex_hull_indexes: numpy.ndarray[numpy.int32[m, 1]] = None,
) -> numpy.ndarray[numpy.int32[m, 1]]
# get concave hull points
concave_hull(
points: Union[numpy.ndarray, List, Tuple],
... # same as
) -> Union[numpy.ndarray, List, Tuple]
# P.S., we provide convex_hull (Graham scan)
from concave_hull import convex_hull, convex_hull_indexes
concavity
is a relative measure of concavity. 1 results in a relatively detailed shape, Infinity results in a convex hull. You can use values lower than 1, but they can produce pretty crazy shapes.length_threshold
: when a segment length is under this threshold, it stops being considered for further detalization. Higher values result in simpler shapes.
(document from https://github.com/mapbox/concaveman)
Example (see full code in test.py
):
import matplotlib.pyplot as plt
import numpy as np
from scipy.spatial import ConvexHull
from concave_hull import concave_hull, concave_hull_indexes
points = []
c = np.array([250, 250])
for x in np.arange(100, 400, 5 * np.pi):
for y in np.arange(100, 400, 5 * np.pi):
if x > c[0] and y > c[1]:
continue
r = np.linalg.norm(c - [x, y])
if r > 150:
continue
points.append([x, y])
points = np.array(points)
convex_hull = ConvexHull(points[:, :2]) # it's already N-by-2, I'm just emphasizing
# https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.ConvexHull.html
plt.plot(points[:, 0], points[:, 1], "o")
for simplex in convex_hull.simplices:
plt.plot(points[simplex, 0], points[simplex, 1], "g-", alpha=0.5)
idxes = concave_hull_indexes(
points[:, :2],
length_threshold=50,
)
# you can get coordinates by `points[idxes]`
assert np.all(points[idxes] == concave_hull(points, length_threshold=50))
for f, t in zip(idxes[:-1], idxes[1:]): # noqa
seg = points[[f, t]]
plt.plot(seg[:, 0], seg[:, 1], "r-", alpha=0.5)
# plt.savefig('hull.png')
plt.show()
Tests
make python_install
make python_test
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distributions
File details
Details for the file concave_hull-0.0.8.tar.gz
.
File metadata
- Download URL: concave_hull-0.0.8.tar.gz
- Upload date:
- Size: 11.4 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.11.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a19848777a2ec211d32a37c3dc742d2f1c3579878f488f78bba27d48bba593ba |
|
MD5 | 5c3f59a5119a91ab31a4dfbfa041040b |
|
BLAKE2b-256 | 531bac2760f41d066a946be1cd453b1196905e978c54be6b61245b0762639e9f |
File details
Details for the file concave_hull-0.0.8-cp313-cp313-win_amd64.whl
.
File metadata
- Download URL: concave_hull-0.0.8-cp313-cp313-win_amd64.whl
- Upload date:
- Size: 83.0 kB
- Tags: CPython 3.13, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.11.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | bae56db77b46ce6af120f321857e432e5695715cbd14ae919b50c3eace0d63ea |
|
MD5 | 76b11b493739d015f8427a680dbccde2 |
|
BLAKE2b-256 | f3172f324af45f36617af03a6cb92863b787bfb4ab1a69509bd13e758be076c0 |
File details
Details for the file concave_hull-0.0.8-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: concave_hull-0.0.8-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 111.5 kB
- Tags: CPython 3.13, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.11.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | cf6a0bb9844df552e8b511a245f0bb2b56c219a328952fd154a126a8c633c36b |
|
MD5 | e42651018805d6a2657591ab14caeae4 |
|
BLAKE2b-256 | f1c690394575ae6ee645a779073678a716fbfa5486178b00c677b1d4c3eacb55 |
File details
Details for the file concave_hull-0.0.8-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
.
File metadata
- Download URL: concave_hull-0.0.8-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
- Upload date:
- Size: 104.0 kB
- Tags: CPython 3.13, manylinux: glibc 2.17+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.11.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5738e5947c921f0087e9b0ec9144ee1c86de02cf88a96d90f659896e4e15c36c |
|
MD5 | 30d36d512aa42c6f26d28007d50925c7 |
|
BLAKE2b-256 | 23022b70897c9a3bd8f2497ce9d2d8698a7b6bf5e767ab342cc99f10a380b608 |
File details
Details for the file concave_hull-0.0.8-cp313-cp313-macosx_11_0_arm64.whl
.
File metadata
- Download URL: concave_hull-0.0.8-cp313-cp313-macosx_11_0_arm64.whl
- Upload date:
- Size: 75.0 kB
- Tags: CPython 3.13, macOS 11.0+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.11.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a75a68a82c6ac9b2e39d74f5d665e9d8cee19a91c3f5d79b0653a3e6c7bcba95 |
|
MD5 | 6d9af8451b222592a80fee3e5b76fecf |
|
BLAKE2b-256 | d6147852b414a07f8bd523344aa0742e91885923b12599b8bd59945249b5c77f |
File details
Details for the file concave_hull-0.0.8-cp313-cp313-macosx_10_13_x86_64.whl
.
File metadata
- Download URL: concave_hull-0.0.8-cp313-cp313-macosx_10_13_x86_64.whl
- Upload date:
- Size: 82.2 kB
- Tags: CPython 3.13, macOS 10.13+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.11.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 77e737da20715a30dbbc39713ff607599e7476907ed16d8565517e2154673f6c |
|
MD5 | 8e6a9641b50cfc1504b01be9edfa6b33 |
|
BLAKE2b-256 | 2b4c940d27f20dd032399420cce293a243a684b95c30d345d040ec839d547ad3 |
File details
Details for the file concave_hull-0.0.8-cp312-cp312-win_amd64.whl
.
File metadata
- Download URL: concave_hull-0.0.8-cp312-cp312-win_amd64.whl
- Upload date:
- Size: 83.1 kB
- Tags: CPython 3.12, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.11.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d2f5c0dc29ba18ba08ed113cc0e45f23463c238e88f6928cd124c93cb4ba9dfa |
|
MD5 | 812fd55c8a8384651775902805eda08f |
|
BLAKE2b-256 | 6233e5ef82a17287bdcfb3b7ef1e18c7adc265902a220f2a183dcf3b5fccdeab |
File details
Details for the file concave_hull-0.0.8-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: concave_hull-0.0.8-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 111.5 kB
- Tags: CPython 3.12, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.11.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e7ac9950d7f8460b3a48dc3ffe4275329263e6a514cdf7d4ec35f5d94149f22b |
|
MD5 | 7c90abf04f4dac2711be35feb2fd55b4 |
|
BLAKE2b-256 | 47f3b3f95a2b453083c1b3ae2934a8f8f3ea46d2fcbdb345533504d545a8476d |
File details
Details for the file concave_hull-0.0.8-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
.
File metadata
- Download URL: concave_hull-0.0.8-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
- Upload date:
- Size: 104.2 kB
- Tags: CPython 3.12, manylinux: glibc 2.17+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.11.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 60fec8c40d63130afb458525d9e8f32353fb286e0c5dec137ef44bb0fd04a0e3 |
|
MD5 | 890ae55ada144c8e225027adb30add00 |
|
BLAKE2b-256 | 9d841f9e6a59ce9c460b89b90010a014a9475804b581aea0083b8bd858630098 |
File details
Details for the file concave_hull-0.0.8-cp312-cp312-macosx_11_0_arm64.whl
.
File metadata
- Download URL: concave_hull-0.0.8-cp312-cp312-macosx_11_0_arm64.whl
- Upload date:
- Size: 75.0 kB
- Tags: CPython 3.12, macOS 11.0+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.11.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | af67e9a2cf5303d5d7898c2d6ae23b1c191d36e017c9e81e0f4c21ed2a94f791 |
|
MD5 | e520fb012b60b60f1afc6266e49e2d62 |
|
BLAKE2b-256 | 72083e055334961f0648c80ece1e1e7ddc76313f4978faa5441edac30258171f |
File details
Details for the file concave_hull-0.0.8-cp312-cp312-macosx_10_13_x86_64.whl
.
File metadata
- Download URL: concave_hull-0.0.8-cp312-cp312-macosx_10_13_x86_64.whl
- Upload date:
- Size: 82.1 kB
- Tags: CPython 3.12, macOS 10.13+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.11.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 99c412f2e6e41c9a24505ae4f252a894cfcaafdb5e81b73a78df284a60789fc6 |
|
MD5 | 35c8d9724bd1bfa7c160bb54145097f9 |
|
BLAKE2b-256 | fce59f35843c5a0ae042a85e2526b85edd87e66e95022e86a3052b2e095e0ec6 |
File details
Details for the file concave_hull-0.0.8-cp311-cp311-win_amd64.whl
.
File metadata
- Download URL: concave_hull-0.0.8-cp311-cp311-win_amd64.whl
- Upload date:
- Size: 82.9 kB
- Tags: CPython 3.11, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.11.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6779a2ae9dff38ce2d73217b6cacd02ed29d417a8a2372e8b0f74a1849158aaa |
|
MD5 | 01fc9de95f2d3b14d4b07c360330b66c |
|
BLAKE2b-256 | 1a07ae0b82444011e1a841d4751755bf93db0a59a0bc0e5e47d959eedaef87a4 |
File details
Details for the file concave_hull-0.0.8-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: concave_hull-0.0.8-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 111.6 kB
- Tags: CPython 3.11, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.11.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c6a8eaf7e642b5eea23ba2408d9eb9add65645f28b78e4ab8c7486e8ced99218 |
|
MD5 | 2dc050f5b1d7637d11602811cdc842dd |
|
BLAKE2b-256 | 77d56ea06258aa532a5d5f1f0184c4fd58923305a6ee1e136da01c0c61e97717 |
File details
Details for the file concave_hull-0.0.8-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
.
File metadata
- Download URL: concave_hull-0.0.8-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
- Upload date:
- Size: 104.3 kB
- Tags: CPython 3.11, manylinux: glibc 2.17+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.11.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 74e668cbe237eac3e409628bcc51d259184e8b5186288794d2a8f21633b35e81 |
|
MD5 | 3822c1535c8ce3c7b5fd15471c425982 |
|
BLAKE2b-256 | e9c7ed8f81299cf1cd105e3ae453e3e64148bfa789582f14c1c51fd86805cc98 |
File details
Details for the file concave_hull-0.0.8-cp311-cp311-macosx_11_0_arm64.whl
.
File metadata
- Download URL: concave_hull-0.0.8-cp311-cp311-macosx_11_0_arm64.whl
- Upload date:
- Size: 75.9 kB
- Tags: CPython 3.11, macOS 11.0+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.11.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 69521ecd034397b6a187d9b7893072bab97ff7f807c03fdbdbad45faabf5f530 |
|
MD5 | fdb51a675f6df27c5b9c4ba9919c400b |
|
BLAKE2b-256 | 64119f72b1740b776b52112d2c63e568c45b59d7d3f06c610b3b62083c014211 |
File details
Details for the file concave_hull-0.0.8-cp311-cp311-macosx_10_9_x86_64.whl
.
File metadata
- Download URL: concave_hull-0.0.8-cp311-cp311-macosx_10_9_x86_64.whl
- Upload date:
- Size: 83.3 kB
- Tags: CPython 3.11, macOS 10.9+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.11.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ccae3d33471c2cae0ae2de7291989484910f4e6f74be327aabef89937e4d8792 |
|
MD5 | a9cc73c5a6b44e48738149945b7283be |
|
BLAKE2b-256 | 91efaf8d8cc45a313fbbc1be13cf87e941516b131e1dbaff9a29ee3d3c4cc2f0 |
File details
Details for the file concave_hull-0.0.8-cp310-cp310-win_amd64.whl
.
File metadata
- Download URL: concave_hull-0.0.8-cp310-cp310-win_amd64.whl
- Upload date:
- Size: 81.5 kB
- Tags: CPython 3.10, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.11.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a32809238f59b2d709fb18e4e0ad8b51eca7c7aab908f676758d6e9815985c69 |
|
MD5 | 1f998c027d778a582005ea85217f630d |
|
BLAKE2b-256 | 84d32396aed17f15d90abba81aa638b224b02307ce11a17b59d3c328e5002aa5 |
File details
Details for the file concave_hull-0.0.8-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: concave_hull-0.0.8-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 110.6 kB
- Tags: CPython 3.10, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.11.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2c93b3d3f32f68f5c407dbb74a61213c699316f29108d21291c42f29bcd78dcb |
|
MD5 | 9505c0f5a706634fcdbdcfdb5e055b61 |
|
BLAKE2b-256 | 49906ef88456e7fd420c56ecda92e4d079b0975ba27658cd57e3b539a176d5c0 |
File details
Details for the file concave_hull-0.0.8-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
.
File metadata
- Download URL: concave_hull-0.0.8-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
- Upload date:
- Size: 102.8 kB
- Tags: CPython 3.10, manylinux: glibc 2.17+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.11.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 270b06a197551e992951f474a34081dd0b6da0a142e45f2488393c0ceb7259d5 |
|
MD5 | 059c8f5e8d67fd3dd5b290983c14d3f1 |
|
BLAKE2b-256 | 91b652e820c2f80131087ddb6911e0cab54c4d90e6521fa27107af313376c4b0 |
File details
Details for the file concave_hull-0.0.8-cp310-cp310-macosx_11_0_arm64.whl
.
File metadata
- Download URL: concave_hull-0.0.8-cp310-cp310-macosx_11_0_arm64.whl
- Upload date:
- Size: 74.6 kB
- Tags: CPython 3.10, macOS 11.0+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.11.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3315ab6ab2e4c979f17a8cde9f50cdea899911f5510e07038ed39e1624c13555 |
|
MD5 | 4b2a9fbc7cfd394f3bd60bdd7986ab17 |
|
BLAKE2b-256 | a21eb7b352da1ead063f043a7ebfb7e2531a6b3437cbd5b98f79948e635d9a0c |
File details
Details for the file concave_hull-0.0.8-cp310-cp310-macosx_10_9_x86_64.whl
.
File metadata
- Download URL: concave_hull-0.0.8-cp310-cp310-macosx_10_9_x86_64.whl
- Upload date:
- Size: 81.8 kB
- Tags: CPython 3.10, macOS 10.9+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.11.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 35ff18ba14073992f16c6892c208b136e88603cde9fcc3342211c2c61f7540c2 |
|
MD5 | 97b8b81355695e3a59333010ca7801db |
|
BLAKE2b-256 | 9beeeb710c979f7382644e65d2732574f80f22cb0cc7bf45bf221b381b830e35 |
File details
Details for the file concave_hull-0.0.8-cp39-cp39-win_amd64.whl
.
File metadata
- Download URL: concave_hull-0.0.8-cp39-cp39-win_amd64.whl
- Upload date:
- Size: 81.6 kB
- Tags: CPython 3.9, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.11.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3a912802619e39aca31cdc9f84f7b8574f3a1ce2478285e7a467e1b5a34f757d |
|
MD5 | ea30ba1cf4cd134c5803a8c261e51c79 |
|
BLAKE2b-256 | e6da74e77531b4c2ab71e4efd49719c157e1b49587060cb573ea6698b7fd490d |
File details
Details for the file concave_hull-0.0.8-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: concave_hull-0.0.8-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 110.3 kB
- Tags: CPython 3.9, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.11.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 442022518dcae675515a657c861e968945857699f226ec4212bf96afd7666da1 |
|
MD5 | 04878949d2b5f8a65e7b25fa3a6acba5 |
|
BLAKE2b-256 | 06868066a5754f7468f0a3b1f29bfc9ea6a140c27416b9cf54a30922b13991cc |
File details
Details for the file concave_hull-0.0.8-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
.
File metadata
- Download URL: concave_hull-0.0.8-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
- Upload date:
- Size: 103.0 kB
- Tags: CPython 3.9, manylinux: glibc 2.17+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.11.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 046ed62d02191fa569a69bdb8be977b81f617894272d9b708e9b19d4728f18e2 |
|
MD5 | 8b869832158ff0ef20282fbbc8f2b326 |
|
BLAKE2b-256 | 0b090f56a9b54d927b364a26febcf3fc3d2fc243cc3a68c48ff29d15bfb95e72 |
File details
Details for the file concave_hull-0.0.8-cp39-cp39-macosx_11_0_arm64.whl
.
File metadata
- Download URL: concave_hull-0.0.8-cp39-cp39-macosx_11_0_arm64.whl
- Upload date:
- Size: 74.7 kB
- Tags: CPython 3.9, macOS 11.0+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.11.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6af7adaf9736e7d3429e1cd9176df0d43a339ed49491d10a1b28f887ce5a060c |
|
MD5 | 617dd0e84e0595106d063c48693913b3 |
|
BLAKE2b-256 | f7082a343c6cd50af755124205f8ccf3eca59d55a14215a58729e933a5c73ed4 |
File details
Details for the file concave_hull-0.0.8-cp39-cp39-macosx_10_9_x86_64.whl
.
File metadata
- Download URL: concave_hull-0.0.8-cp39-cp39-macosx_10_9_x86_64.whl
- Upload date:
- Size: 81.8 kB
- Tags: CPython 3.9, macOS 10.9+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.11.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 20524dab44d0a4b60e85b03dc1165f8d593b17d6a49f835f6af7df26df5d75c8 |
|
MD5 | 6810605126234c53aa252923c7891056 |
|
BLAKE2b-256 | 8c2d531ab297bc092ad07cff391459ec1329459c6689534ab86a74443dd83ac4 |
File details
Details for the file concave_hull-0.0.8-cp38-cp38-win_amd64.whl
.
File metadata
- Download URL: concave_hull-0.0.8-cp38-cp38-win_amd64.whl
- Upload date:
- Size: 81.5 kB
- Tags: CPython 3.8, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.11.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 62b0f998c52480c4ee7310a4d0422b320997346669c5885d50b4ad2115a02b48 |
|
MD5 | 5ce462efdd7144c6c48415514e66100f |
|
BLAKE2b-256 | 6c337d4857f58b11f039cfa537f41e65ba7aa2a1b95f574bce991235615a71a1 |
File details
Details for the file concave_hull-0.0.8-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: concave_hull-0.0.8-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 110.5 kB
- Tags: CPython 3.8, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.11.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3ff636765583af9b5269abddc8b06477d5d3ee041a4b158a8aba7c2eeeba91a6 |
|
MD5 | 875d4cf753060d68e984786b007ae437 |
|
BLAKE2b-256 | cc70d6cce2ac4e0e55eaf4a55b4ed7bec9e6b17fe4f4e233120704390d68cb29 |
File details
Details for the file concave_hull-0.0.8-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
.
File metadata
- Download URL: concave_hull-0.0.8-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
- Upload date:
- Size: 102.8 kB
- Tags: CPython 3.8, manylinux: glibc 2.17+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.11.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b29de674790ffd11e6d61381271f25fff996d4bc1e8138c97e92af208708df0d |
|
MD5 | 4218e59f3b385a090a321ee1c4df7a79 |
|
BLAKE2b-256 | 76d1fd2c244394ad67d03d951badf1e4a82df9792e87f655603caed6b742e6ec |
File details
Details for the file concave_hull-0.0.8-cp38-cp38-macosx_11_0_arm64.whl
.
File metadata
- Download URL: concave_hull-0.0.8-cp38-cp38-macosx_11_0_arm64.whl
- Upload date:
- Size: 74.5 kB
- Tags: CPython 3.8, macOS 11.0+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.11.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3c559098f07703bf305f5e4a8499ecb5ef5c51dbf76cbea3a3c7f2360bf55db0 |
|
MD5 | 347d2f235b0b1b454bae5049186d9d27 |
|
BLAKE2b-256 | 7bd0f937b3f4527ce4969d9cef16749926e2f626db844ac84455d0a474a081be |
File details
Details for the file concave_hull-0.0.8-cp38-cp38-macosx_10_9_x86_64.whl
.
File metadata
- Download URL: concave_hull-0.0.8-cp38-cp38-macosx_10_9_x86_64.whl
- Upload date:
- Size: 81.6 kB
- Tags: CPython 3.8, macOS 10.9+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.11.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 122bc39c1acba72766753c8a7c2c969206cba2ee1216c1d2b04a14d1076ff244 |
|
MD5 | e561ee4bd727caffd3d62d974533a44a |
|
BLAKE2b-256 | 9e1ff04bae148d738a3cdda62ef11e134502ab4511fee079b0e1962a015ba291 |
File details
Details for the file concave_hull-0.0.8-cp37-cp37m-win_amd64.whl
.
File metadata
- Download URL: concave_hull-0.0.8-cp37-cp37m-win_amd64.whl
- Upload date:
- Size: 81.7 kB
- Tags: CPython 3.7m, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.11.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | afe343a6d99755b72e5b7a1a6dda03a467c4aecc259306a74978a03c100e4298 |
|
MD5 | 453e5674240e0dcb7e2c1929379bea09 |
|
BLAKE2b-256 | c22e7f712218efdf255a22759b2511fcb9eff4c1141afe712db077fbdd7aa1fb |
File details
Details for the file concave_hull-0.0.8-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: concave_hull-0.0.8-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 113.3 kB
- Tags: CPython 3.7m, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.11.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d9864de39f8aa603082033d3dcca8678ffc1ae0f519ebd48523fa1c6e93042f3 |
|
MD5 | 6da951623097ebd087fa95a361226fbd |
|
BLAKE2b-256 | 7a98531006ca4523a35cc78fa064a87dbbe99fac4b25550fe09f1d14d78c0b49 |
File details
Details for the file concave_hull-0.0.8-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
.
File metadata
- Download URL: concave_hull-0.0.8-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
- Upload date:
- Size: 105.5 kB
- Tags: CPython 3.7m, manylinux: glibc 2.17+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.11.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 88467ce9ced33caa3abcfb73080ed654a51410994426c38bf656e6d2ce35e9ac |
|
MD5 | 14b6d9cc4bd25227bded334ffc2f277f |
|
BLAKE2b-256 | a85726eaf74da980f8e77ce189d8aadd84115c4dad3a6154832c877058f0aa48 |
File details
Details for the file concave_hull-0.0.8-cp37-cp37m-macosx_10_9_x86_64.whl
.
File metadata
- Download URL: concave_hull-0.0.8-cp37-cp37m-macosx_10_9_x86_64.whl
- Upload date:
- Size: 81.2 kB
- Tags: CPython 3.7m, macOS 10.9+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.11.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3a429ff6e32fa80cd434477f16d31fa6fb0d4ae10d6c2c69f09b37abd22bcffd |
|
MD5 | 66661b26573b52e991f0e3137b7a92bf |
|
BLAKE2b-256 | 3dcdc03c7bc627c5c6b38956c35a284c6db8234d7286f4cbe40ef9cf0e00c76a |