Skip to main content

A very fast 2D concave hull algorithm

Project description

concave_hull

A very fast 2D concave hull algorithm.

Credits goes to:

Online document: https://concave-hull.readthedocs.io/en/latest/

Install

via pip

pip install -U concave_hull

from source

git clone --recursive https://github.com/cubao/concave_hull
pip install ./concave_hull

Or

pip install git+https://github.com/cubao/concave_hull.git

(you can build wheels for later reuse by pip wheel git+https://github.com/cubao/concave_hull.git)

Usage

Signature:

# import
from concave_hull import concave_hull, concave_hull_indexes

# get concave hull indexes
concave_hull_indexes(
       points: Union[numpy.ndarray, List, Tuple],
       *,
       concavity: float = 2.0,
       length_threshold: float = 0.0,
       # you can just ignore "convex_hull_indexes"
       convex_hull_indexes: numpy.ndarray[numpy.int32[m, 1]] = None,
) -> numpy.ndarray[numpy.int32[m, 1]]

# get concave hull points
concave_hull(
       points: Union[numpy.ndarray, List, Tuple],
       ... # same as
) -> Union[numpy.ndarray, List, Tuple]

# P.S., we provide convex_hull (Graham scan)
from concave_hull import convex_hull, convex_hull_indexes
  • concavity is a relative measure of concavity. 1 results in a relatively detailed shape, Infinity results in a convex hull. You can use values lower than 1, but they can produce pretty crazy shapes.
  • length_threshold: when a segment length is under this threshold, it stops being considered for further detalization. Higher values result in simpler shapes.

(document from https://github.com/mapbox/concaveman)

Example (see full code in test.py):

import matplotlib.pyplot as plt
import numpy as np
from scipy.spatial import ConvexHull

from concave_hull import concave_hull, concave_hull_indexes

points = []
c = np.array([250, 250])
for x in np.arange(100, 400, 5 * np.pi):
    for y in np.arange(100, 400, 5 * np.pi):
        if x > c[0] and y > c[1]:
            continue
        r = np.linalg.norm(c - [x, y])
        if r > 150:
            continue
        points.append([x, y])
points = np.array(points)
convex_hull = ConvexHull(points[:, :2])  # it's already N-by-2, I'm just emphasizing

# https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.ConvexHull.html

plt.plot(points[:, 0], points[:, 1], "o")
for simplex in convex_hull.simplices:
    plt.plot(points[simplex, 0], points[simplex, 1], "g-", alpha=0.5)

idxes = concave_hull_indexes(
    points[:, :2],
    length_threshold=50,
)
# you can get coordinates by `points[idxes]`
assert np.all(points[idxes] == concave_hull(points, length_threshold=50))

for f, t in zip(idxes[:-1], idxes[1:]):  # noqa
    seg = points[[f, t]]
    plt.plot(seg[:, 0], seg[:, 1], "r-", alpha=0.5)
# plt.savefig('hull.png')
plt.show()

Tests

make python_install
make python_test

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

concave_hull-0.0.8.tar.gz (11.4 MB view details)

Uploaded Source

Built Distributions

concave_hull-0.0.8-cp313-cp313-win_amd64.whl (83.0 kB view details)

Uploaded CPython 3.13 Windows x86-64

concave_hull-0.0.8-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (111.5 kB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ x86-64

concave_hull-0.0.8-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (104.0 kB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ ARM64

concave_hull-0.0.8-cp313-cp313-macosx_11_0_arm64.whl (75.0 kB view details)

Uploaded CPython 3.13 macOS 11.0+ ARM64

concave_hull-0.0.8-cp313-cp313-macosx_10_13_x86_64.whl (82.2 kB view details)

Uploaded CPython 3.13 macOS 10.13+ x86-64

concave_hull-0.0.8-cp312-cp312-win_amd64.whl (83.1 kB view details)

Uploaded CPython 3.12 Windows x86-64

concave_hull-0.0.8-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (111.5 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

concave_hull-0.0.8-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (104.2 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

concave_hull-0.0.8-cp312-cp312-macosx_11_0_arm64.whl (75.0 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

concave_hull-0.0.8-cp312-cp312-macosx_10_13_x86_64.whl (82.1 kB view details)

Uploaded CPython 3.12 macOS 10.13+ x86-64

concave_hull-0.0.8-cp311-cp311-win_amd64.whl (82.9 kB view details)

Uploaded CPython 3.11 Windows x86-64

concave_hull-0.0.8-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (111.6 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

concave_hull-0.0.8-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (104.3 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

concave_hull-0.0.8-cp311-cp311-macosx_11_0_arm64.whl (75.9 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

concave_hull-0.0.8-cp311-cp311-macosx_10_9_x86_64.whl (83.3 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

concave_hull-0.0.8-cp310-cp310-win_amd64.whl (81.5 kB view details)

Uploaded CPython 3.10 Windows x86-64

concave_hull-0.0.8-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (110.6 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

concave_hull-0.0.8-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (102.8 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

concave_hull-0.0.8-cp310-cp310-macosx_11_0_arm64.whl (74.6 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

concave_hull-0.0.8-cp310-cp310-macosx_10_9_x86_64.whl (81.8 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

concave_hull-0.0.8-cp39-cp39-win_amd64.whl (81.6 kB view details)

Uploaded CPython 3.9 Windows x86-64

concave_hull-0.0.8-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (110.3 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

concave_hull-0.0.8-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (103.0 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

concave_hull-0.0.8-cp39-cp39-macosx_11_0_arm64.whl (74.7 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

concave_hull-0.0.8-cp39-cp39-macosx_10_9_x86_64.whl (81.8 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

concave_hull-0.0.8-cp38-cp38-win_amd64.whl (81.5 kB view details)

Uploaded CPython 3.8 Windows x86-64

concave_hull-0.0.8-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (110.5 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

concave_hull-0.0.8-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (102.8 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

concave_hull-0.0.8-cp38-cp38-macosx_11_0_arm64.whl (74.5 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

concave_hull-0.0.8-cp38-cp38-macosx_10_9_x86_64.whl (81.6 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

concave_hull-0.0.8-cp37-cp37m-win_amd64.whl (81.7 kB view details)

Uploaded CPython 3.7m Windows x86-64

concave_hull-0.0.8-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (113.3 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

concave_hull-0.0.8-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (105.5 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

concave_hull-0.0.8-cp37-cp37m-macosx_10_9_x86_64.whl (81.2 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file concave_hull-0.0.8.tar.gz.

File metadata

  • Download URL: concave_hull-0.0.8.tar.gz
  • Upload date:
  • Size: 11.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.10

File hashes

Hashes for concave_hull-0.0.8.tar.gz
Algorithm Hash digest
SHA256 a19848777a2ec211d32a37c3dc742d2f1c3579878f488f78bba27d48bba593ba
MD5 5c3f59a5119a91ab31a4dfbfa041040b
BLAKE2b-256 531bac2760f41d066a946be1cd453b1196905e978c54be6b61245b0762639e9f

See more details on using hashes here.

File details

Details for the file concave_hull-0.0.8-cp313-cp313-win_amd64.whl.

File metadata

File hashes

Hashes for concave_hull-0.0.8-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 bae56db77b46ce6af120f321857e432e5695715cbd14ae919b50c3eace0d63ea
MD5 76b11b493739d015f8427a680dbccde2
BLAKE2b-256 f3172f324af45f36617af03a6cb92863b787bfb4ab1a69509bd13e758be076c0

See more details on using hashes here.

File details

Details for the file concave_hull-0.0.8-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for concave_hull-0.0.8-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cf6a0bb9844df552e8b511a245f0bb2b56c219a328952fd154a126a8c633c36b
MD5 e42651018805d6a2657591ab14caeae4
BLAKE2b-256 f1c690394575ae6ee645a779073678a716fbfa5486178b00c677b1d4c3eacb55

See more details on using hashes here.

File details

Details for the file concave_hull-0.0.8-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for concave_hull-0.0.8-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5738e5947c921f0087e9b0ec9144ee1c86de02cf88a96d90f659896e4e15c36c
MD5 30d36d512aa42c6f26d28007d50925c7
BLAKE2b-256 23022b70897c9a3bd8f2497ce9d2d8698a7b6bf5e767ab342cc99f10a380b608

See more details on using hashes here.

File details

Details for the file concave_hull-0.0.8-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for concave_hull-0.0.8-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a75a68a82c6ac9b2e39d74f5d665e9d8cee19a91c3f5d79b0653a3e6c7bcba95
MD5 6d9af8451b222592a80fee3e5b76fecf
BLAKE2b-256 d6147852b414a07f8bd523344aa0742e91885923b12599b8bd59945249b5c77f

See more details on using hashes here.

File details

Details for the file concave_hull-0.0.8-cp313-cp313-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for concave_hull-0.0.8-cp313-cp313-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 77e737da20715a30dbbc39713ff607599e7476907ed16d8565517e2154673f6c
MD5 8e6a9641b50cfc1504b01be9edfa6b33
BLAKE2b-256 2b4c940d27f20dd032399420cce293a243a684b95c30d345d040ec839d547ad3

See more details on using hashes here.

File details

Details for the file concave_hull-0.0.8-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for concave_hull-0.0.8-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 d2f5c0dc29ba18ba08ed113cc0e45f23463c238e88f6928cd124c93cb4ba9dfa
MD5 812fd55c8a8384651775902805eda08f
BLAKE2b-256 6233e5ef82a17287bdcfb3b7ef1e18c7adc265902a220f2a183dcf3b5fccdeab

See more details on using hashes here.

File details

Details for the file concave_hull-0.0.8-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for concave_hull-0.0.8-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e7ac9950d7f8460b3a48dc3ffe4275329263e6a514cdf7d4ec35f5d94149f22b
MD5 7c90abf04f4dac2711be35feb2fd55b4
BLAKE2b-256 47f3b3f95a2b453083c1b3ae2934a8f8f3ea46d2fcbdb345533504d545a8476d

See more details on using hashes here.

File details

Details for the file concave_hull-0.0.8-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for concave_hull-0.0.8-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 60fec8c40d63130afb458525d9e8f32353fb286e0c5dec137ef44bb0fd04a0e3
MD5 890ae55ada144c8e225027adb30add00
BLAKE2b-256 9d841f9e6a59ce9c460b89b90010a014a9475804b581aea0083b8bd858630098

See more details on using hashes here.

File details

Details for the file concave_hull-0.0.8-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for concave_hull-0.0.8-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 af67e9a2cf5303d5d7898c2d6ae23b1c191d36e017c9e81e0f4c21ed2a94f791
MD5 e520fb012b60b60f1afc6266e49e2d62
BLAKE2b-256 72083e055334961f0648c80ece1e1e7ddc76313f4978faa5441edac30258171f

See more details on using hashes here.

File details

Details for the file concave_hull-0.0.8-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for concave_hull-0.0.8-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 99c412f2e6e41c9a24505ae4f252a894cfcaafdb5e81b73a78df284a60789fc6
MD5 35c8d9724bd1bfa7c160bb54145097f9
BLAKE2b-256 fce59f35843c5a0ae042a85e2526b85edd87e66e95022e86a3052b2e095e0ec6

See more details on using hashes here.

File details

Details for the file concave_hull-0.0.8-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for concave_hull-0.0.8-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 6779a2ae9dff38ce2d73217b6cacd02ed29d417a8a2372e8b0f74a1849158aaa
MD5 01fc9de95f2d3b14d4b07c360330b66c
BLAKE2b-256 1a07ae0b82444011e1a841d4751755bf93db0a59a0bc0e5e47d959eedaef87a4

See more details on using hashes here.

File details

Details for the file concave_hull-0.0.8-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for concave_hull-0.0.8-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c6a8eaf7e642b5eea23ba2408d9eb9add65645f28b78e4ab8c7486e8ced99218
MD5 2dc050f5b1d7637d11602811cdc842dd
BLAKE2b-256 77d56ea06258aa532a5d5f1f0184c4fd58923305a6ee1e136da01c0c61e97717

See more details on using hashes here.

File details

Details for the file concave_hull-0.0.8-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for concave_hull-0.0.8-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 74e668cbe237eac3e409628bcc51d259184e8b5186288794d2a8f21633b35e81
MD5 3822c1535c8ce3c7b5fd15471c425982
BLAKE2b-256 e9c7ed8f81299cf1cd105e3ae453e3e64148bfa789582f14c1c51fd86805cc98

See more details on using hashes here.

File details

Details for the file concave_hull-0.0.8-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for concave_hull-0.0.8-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 69521ecd034397b6a187d9b7893072bab97ff7f807c03fdbdbad45faabf5f530
MD5 fdb51a675f6df27c5b9c4ba9919c400b
BLAKE2b-256 64119f72b1740b776b52112d2c63e568c45b59d7d3f06c610b3b62083c014211

See more details on using hashes here.

File details

Details for the file concave_hull-0.0.8-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for concave_hull-0.0.8-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ccae3d33471c2cae0ae2de7291989484910f4e6f74be327aabef89937e4d8792
MD5 a9cc73c5a6b44e48738149945b7283be
BLAKE2b-256 91efaf8d8cc45a313fbbc1be13cf87e941516b131e1dbaff9a29ee3d3c4cc2f0

See more details on using hashes here.

File details

Details for the file concave_hull-0.0.8-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for concave_hull-0.0.8-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 a32809238f59b2d709fb18e4e0ad8b51eca7c7aab908f676758d6e9815985c69
MD5 1f998c027d778a582005ea85217f630d
BLAKE2b-256 84d32396aed17f15d90abba81aa638b224b02307ce11a17b59d3c328e5002aa5

See more details on using hashes here.

File details

Details for the file concave_hull-0.0.8-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for concave_hull-0.0.8-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2c93b3d3f32f68f5c407dbb74a61213c699316f29108d21291c42f29bcd78dcb
MD5 9505c0f5a706634fcdbdcfdb5e055b61
BLAKE2b-256 49906ef88456e7fd420c56ecda92e4d079b0975ba27658cd57e3b539a176d5c0

See more details on using hashes here.

File details

Details for the file concave_hull-0.0.8-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for concave_hull-0.0.8-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 270b06a197551e992951f474a34081dd0b6da0a142e45f2488393c0ceb7259d5
MD5 059c8f5e8d67fd3dd5b290983c14d3f1
BLAKE2b-256 91b652e820c2f80131087ddb6911e0cab54c4d90e6521fa27107af313376c4b0

See more details on using hashes here.

File details

Details for the file concave_hull-0.0.8-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for concave_hull-0.0.8-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3315ab6ab2e4c979f17a8cde9f50cdea899911f5510e07038ed39e1624c13555
MD5 4b2a9fbc7cfd394f3bd60bdd7986ab17
BLAKE2b-256 a21eb7b352da1ead063f043a7ebfb7e2531a6b3437cbd5b98f79948e635d9a0c

See more details on using hashes here.

File details

Details for the file concave_hull-0.0.8-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for concave_hull-0.0.8-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 35ff18ba14073992f16c6892c208b136e88603cde9fcc3342211c2c61f7540c2
MD5 97b8b81355695e3a59333010ca7801db
BLAKE2b-256 9beeeb710c979f7382644e65d2732574f80f22cb0cc7bf45bf221b381b830e35

See more details on using hashes here.

File details

Details for the file concave_hull-0.0.8-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for concave_hull-0.0.8-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 3a912802619e39aca31cdc9f84f7b8574f3a1ce2478285e7a467e1b5a34f757d
MD5 ea30ba1cf4cd134c5803a8c261e51c79
BLAKE2b-256 e6da74e77531b4c2ab71e4efd49719c157e1b49587060cb573ea6698b7fd490d

See more details on using hashes here.

File details

Details for the file concave_hull-0.0.8-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for concave_hull-0.0.8-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 442022518dcae675515a657c861e968945857699f226ec4212bf96afd7666da1
MD5 04878949d2b5f8a65e7b25fa3a6acba5
BLAKE2b-256 06868066a5754f7468f0a3b1f29bfc9ea6a140c27416b9cf54a30922b13991cc

See more details on using hashes here.

File details

Details for the file concave_hull-0.0.8-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for concave_hull-0.0.8-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 046ed62d02191fa569a69bdb8be977b81f617894272d9b708e9b19d4728f18e2
MD5 8b869832158ff0ef20282fbbc8f2b326
BLAKE2b-256 0b090f56a9b54d927b364a26febcf3fc3d2fc243cc3a68c48ff29d15bfb95e72

See more details on using hashes here.

File details

Details for the file concave_hull-0.0.8-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for concave_hull-0.0.8-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6af7adaf9736e7d3429e1cd9176df0d43a339ed49491d10a1b28f887ce5a060c
MD5 617dd0e84e0595106d063c48693913b3
BLAKE2b-256 f7082a343c6cd50af755124205f8ccf3eca59d55a14215a58729e933a5c73ed4

See more details on using hashes here.

File details

Details for the file concave_hull-0.0.8-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for concave_hull-0.0.8-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 20524dab44d0a4b60e85b03dc1165f8d593b17d6a49f835f6af7df26df5d75c8
MD5 6810605126234c53aa252923c7891056
BLAKE2b-256 8c2d531ab297bc092ad07cff391459ec1329459c6689534ab86a74443dd83ac4

See more details on using hashes here.

File details

Details for the file concave_hull-0.0.8-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for concave_hull-0.0.8-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 62b0f998c52480c4ee7310a4d0422b320997346669c5885d50b4ad2115a02b48
MD5 5ce462efdd7144c6c48415514e66100f
BLAKE2b-256 6c337d4857f58b11f039cfa537f41e65ba7aa2a1b95f574bce991235615a71a1

See more details on using hashes here.

File details

Details for the file concave_hull-0.0.8-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for concave_hull-0.0.8-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3ff636765583af9b5269abddc8b06477d5d3ee041a4b158a8aba7c2eeeba91a6
MD5 875d4cf753060d68e984786b007ae437
BLAKE2b-256 cc70d6cce2ac4e0e55eaf4a55b4ed7bec9e6b17fe4f4e233120704390d68cb29

See more details on using hashes here.

File details

Details for the file concave_hull-0.0.8-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for concave_hull-0.0.8-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b29de674790ffd11e6d61381271f25fff996d4bc1e8138c97e92af208708df0d
MD5 4218e59f3b385a090a321ee1c4df7a79
BLAKE2b-256 76d1fd2c244394ad67d03d951badf1e4a82df9792e87f655603caed6b742e6ec

See more details on using hashes here.

File details

Details for the file concave_hull-0.0.8-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for concave_hull-0.0.8-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3c559098f07703bf305f5e4a8499ecb5ef5c51dbf76cbea3a3c7f2360bf55db0
MD5 347d2f235b0b1b454bae5049186d9d27
BLAKE2b-256 7bd0f937b3f4527ce4969d9cef16749926e2f626db844ac84455d0a474a081be

See more details on using hashes here.

File details

Details for the file concave_hull-0.0.8-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for concave_hull-0.0.8-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 122bc39c1acba72766753c8a7c2c969206cba2ee1216c1d2b04a14d1076ff244
MD5 e561ee4bd727caffd3d62d974533a44a
BLAKE2b-256 9e1ff04bae148d738a3cdda62ef11e134502ab4511fee079b0e1962a015ba291

See more details on using hashes here.

File details

Details for the file concave_hull-0.0.8-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for concave_hull-0.0.8-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 afe343a6d99755b72e5b7a1a6dda03a467c4aecc259306a74978a03c100e4298
MD5 453e5674240e0dcb7e2c1929379bea09
BLAKE2b-256 c22e7f712218efdf255a22759b2511fcb9eff4c1141afe712db077fbdd7aa1fb

See more details on using hashes here.

File details

Details for the file concave_hull-0.0.8-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for concave_hull-0.0.8-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d9864de39f8aa603082033d3dcca8678ffc1ae0f519ebd48523fa1c6e93042f3
MD5 6da951623097ebd087fa95a361226fbd
BLAKE2b-256 7a98531006ca4523a35cc78fa064a87dbbe99fac4b25550fe09f1d14d78c0b49

See more details on using hashes here.

File details

Details for the file concave_hull-0.0.8-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for concave_hull-0.0.8-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 88467ce9ced33caa3abcfb73080ed654a51410994426c38bf656e6d2ce35e9ac
MD5 14b6d9cc4bd25227bded334ffc2f277f
BLAKE2b-256 a85726eaf74da980f8e77ce189d8aadd84115c4dad3a6154832c877058f0aa48

See more details on using hashes here.

File details

Details for the file concave_hull-0.0.8-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for concave_hull-0.0.8-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3a429ff6e32fa80cd434477f16d31fa6fb0d4ae10d6c2c69f09b37abd22bcffd
MD5 66661b26573b52e991f0e3137b7a92bf
BLAKE2b-256 3dcdc03c7bc627c5c6b38956c35a284c6db8234d7286f4cbe40ef9cf0e00c76a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page