Skip to main content

A very fast 2D concave hull algorithm

Project description

concave_hull

A very fast 2D concave hull algorithm.

Credits goes to:

Online document: https://concave-hull.readthedocs.io/en/latest/

Install

via pip

pip install -U concave_hull

from source

git clone --recursive https://github.com/cubao/concave_hull
pip install ./concave_hull

Or

pip install git+https://github.com/cubao/concave_hull.git

(you can build wheels for later reuse by pip wheel git+https://github.com/cubao/concave_hull.git)

Usage

Signature:

# import
from concave_hull import concave_hull, concave_hull_indexes

# get concave hull indexes
concave_hull_indexes(
       points: Union[numpy.ndarray, List, Tuple],
       *,
       concavity: float = 2.0,
       length_threshold: float = 0.0,
       # you can just ignore "convex_hull_indexes"
       convex_hull_indexes: numpy.ndarray[numpy.int32[m, 1]] = None,
) -> numpy.ndarray[numpy.int32[m, 1]]

# get concave hull points
concave_hull(
       points: Union[numpy.ndarray, List, Tuple],
       ... # same as
) -> Union[numpy.ndarray, List, Tuple]

# P.S., we provide convex_hull (Graham scan)
from concave_hull import convex_hull, convex_hull_indexes
  • concavity is a relative measure of concavity. 1 results in a relatively detailed shape, Infinity results in a convex hull. You can use values lower than 1, but they can produce pretty crazy shapes.
  • length_threshold: when a segment length is under this threshold, it stops being considered for further detalization. Higher values result in simpler shapes.

(document from https://github.com/mapbox/concaveman)

Example (see full code in test.py):

import matplotlib.pyplot as plt
import numpy as np
from scipy.spatial import ConvexHull

from concave_hull import concave_hull, concave_hull_indexes

points = []
c = np.array([250, 250])
for x in np.arange(100, 400, 5 * np.pi):
    for y in np.arange(100, 400, 5 * np.pi):
        if x > c[0] and y > c[1]:
            continue
        r = np.linalg.norm(c - [x, y])
        if r > 150:
            continue
        points.append([x, y])
points = np.array(points)
convex_hull = ConvexHull(points[:, :2])  # it's already N-by-2, I'm just emphasizing

# https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.ConvexHull.html

plt.plot(points[:, 0], points[:, 1], "o")
for simplex in convex_hull.simplices:
    plt.plot(points[simplex, 0], points[simplex, 1], "g-", alpha=0.5)

idxes = concave_hull_indexes(
    points[:, :2],
    length_threshold=50,
)
# you can get coordinates by `points[idxes]`
assert np.all(points[idxes] == concave_hull(points, length_threshold=50))

for f, t in zip(idxes[:-1], idxes[1:]):  # noqa
    seg = points[[f, t]]
    plt.plot(seg[:, 0], seg[:, 1], "r-", alpha=0.5)
# plt.savefig('hull.png')
plt.show()

Tests

make python_install
make python_test

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

concave_hull-0.0.9.tar.gz (11.4 MB view details)

Uploaded Source

Built Distributions

concave_hull-0.0.9-cp313-cp313-win_amd64.whl (87.0 kB view details)

Uploaded CPython 3.13 Windows x86-64

concave_hull-0.0.9-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (115.9 kB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ x86-64

concave_hull-0.0.9-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (108.8 kB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ ARM64

concave_hull-0.0.9-cp313-cp313-macosx_11_0_arm64.whl (78.0 kB view details)

Uploaded CPython 3.13 macOS 11.0+ ARM64

concave_hull-0.0.9-cp313-cp313-macosx_10_13_x86_64.whl (85.1 kB view details)

Uploaded CPython 3.13 macOS 10.13+ x86-64

concave_hull-0.0.9-cp312-cp312-win_amd64.whl (87.0 kB view details)

Uploaded CPython 3.12 Windows x86-64

concave_hull-0.0.9-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (116.0 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

concave_hull-0.0.9-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (108.7 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

concave_hull-0.0.9-cp312-cp312-macosx_11_0_arm64.whl (78.0 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

concave_hull-0.0.9-cp312-cp312-macosx_10_13_x86_64.whl (85.0 kB view details)

Uploaded CPython 3.12 macOS 10.13+ x86-64

concave_hull-0.0.9-cp311-cp311-win_amd64.whl (87.0 kB view details)

Uploaded CPython 3.11 Windows x86-64

concave_hull-0.0.9-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (116.1 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

concave_hull-0.0.9-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (108.5 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

concave_hull-0.0.9-cp311-cp311-macosx_11_0_arm64.whl (79.0 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

concave_hull-0.0.9-cp311-cp311-macosx_10_9_x86_64.whl (86.4 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

concave_hull-0.0.9-cp310-cp310-win_amd64.whl (85.5 kB view details)

Uploaded CPython 3.10 Windows x86-64

concave_hull-0.0.9-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (115.0 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

concave_hull-0.0.9-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (107.5 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

concave_hull-0.0.9-cp310-cp310-macosx_11_0_arm64.whl (77.7 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

concave_hull-0.0.9-cp310-cp310-macosx_10_9_x86_64.whl (84.8 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

concave_hull-0.0.9-cp39-cp39-win_amd64.whl (85.6 kB view details)

Uploaded CPython 3.9 Windows x86-64

concave_hull-0.0.9-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (115.0 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

concave_hull-0.0.9-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (107.6 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

concave_hull-0.0.9-cp39-cp39-macosx_11_0_arm64.whl (77.7 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

concave_hull-0.0.9-cp39-cp39-macosx_10_9_x86_64.whl (84.9 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

concave_hull-0.0.9-cp38-cp38-win_amd64.whl (85.5 kB view details)

Uploaded CPython 3.8 Windows x86-64

concave_hull-0.0.9-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (114.8 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

concave_hull-0.0.9-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (107.7 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

concave_hull-0.0.9-cp38-cp38-macosx_11_0_arm64.whl (77.5 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

concave_hull-0.0.9-cp38-cp38-macosx_10_9_x86_64.whl (84.7 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

concave_hull-0.0.9-cp37-cp37m-win_amd64.whl (85.8 kB view details)

Uploaded CPython 3.7m Windows x86-64

concave_hull-0.0.9-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (118.7 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

concave_hull-0.0.9-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (110.4 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

concave_hull-0.0.9-cp37-cp37m-macosx_10_9_x86_64.whl (84.3 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file concave_hull-0.0.9.tar.gz.

File metadata

  • Download URL: concave_hull-0.0.9.tar.gz
  • Upload date:
  • Size: 11.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.11

File hashes

Hashes for concave_hull-0.0.9.tar.gz
Algorithm Hash digest
SHA256 f0727dc6bff5138b5988c3baeefef42c0dc494c838a86624667047d7c9678bd8
MD5 5f9e52e79b7801e5433950fbd25d109b
BLAKE2b-256 28d271ddd97f5075acff9a604cc552006fd5a24b4443831fc9cbe7d55d37fc2d

See more details on using hashes here.

File details

Details for the file concave_hull-0.0.9-cp313-cp313-win_amd64.whl.

File metadata

File hashes

Hashes for concave_hull-0.0.9-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 7aefca8c35261e95f83809beebd7f534e3f29b603502a23139177ff20aa837b1
MD5 b35d1d42ff13cc21953fa69cdc5997a5
BLAKE2b-256 85fcf4ce84bf59c8576919a1b5d2ecf3f5344fac9876fadc3f1d5b0c658846f7

See more details on using hashes here.

File details

Details for the file concave_hull-0.0.9-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for concave_hull-0.0.9-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2fe7d8e9a25bee4c360e2ed6452d557451efbfd2afc5e9d0b8bbc5e40cc04a38
MD5 7368c16128cd0238054a6eda397c8a8e
BLAKE2b-256 e797da709570f8ce5367dc551a8e4ce151e8898183c0ea1c3346080112c37c1e

See more details on using hashes here.

File details

Details for the file concave_hull-0.0.9-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for concave_hull-0.0.9-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7b3bd94b29885e60ee1ba3f57f6d16ba8bd121255c546a7ab5ab75cf2a9bc469
MD5 ff82fa57f5c7e68744b4b3c570ff3a43
BLAKE2b-256 50d19ac15c1c642ab5c792eb1749013fdbf13eb4092576b31f12e99f4a1aebb5

See more details on using hashes here.

File details

Details for the file concave_hull-0.0.9-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for concave_hull-0.0.9-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5c445dc44982faff860695f7d9bc3c2fffc37e5feab42e064a346134ac378c46
MD5 2f7ec06c3c002dc876685fc594401d12
BLAKE2b-256 9164692fa31b74951c87f7dc09be3d715241d49449e31adaa1fe209b9c26b9c7

See more details on using hashes here.

File details

Details for the file concave_hull-0.0.9-cp313-cp313-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for concave_hull-0.0.9-cp313-cp313-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 8f4f534c2829e1171d2376029dfc99e4c322cb87548b271c9f9164c58cc8bca2
MD5 04473e820e3814eed0e736652ee31b3b
BLAKE2b-256 529f8638f872d08238518bbba0d4d74b72330faa2cfbb12d0970db809a2e4c66

See more details on using hashes here.

File details

Details for the file concave_hull-0.0.9-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for concave_hull-0.0.9-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 29efe6cf9ba0e29034b8c051f4d03380985219262ccb31b0bac3188cc8641fa4
MD5 3eecf3137dd7d858370b95202dff6277
BLAKE2b-256 57ce91535188a6d4958aa85d9fe32c6dc8b5ee7b45c7846a5faaffd7c218bf14

See more details on using hashes here.

File details

Details for the file concave_hull-0.0.9-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for concave_hull-0.0.9-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3e09c88000ea00a1b80887c116956987dc877552f63ea43757c133fdd48a5a22
MD5 b23c3ecefec61ca387fef67ab07343d3
BLAKE2b-256 37e4c806cc43c206dafec9b8172cffa7776265a4576c4a7c791a3e5ac5d817cb

See more details on using hashes here.

File details

Details for the file concave_hull-0.0.9-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for concave_hull-0.0.9-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8fd646c93e105ca8dcd5b8fb46af1b810b0562485d8a00f658eb5bef0bfa6050
MD5 0a449c980f327cfb8f7d77a2e1c67975
BLAKE2b-256 eb541313f120476df5fef08c82e2a2cdb8ece98895a20a368527900589f735e3

See more details on using hashes here.

File details

Details for the file concave_hull-0.0.9-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for concave_hull-0.0.9-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5f7620205ae40f938e7c43816aeaf2f9d181e3475e4af2e873ffe014d7c2ced2
MD5 1d80a39d6135ec1d9ec285bfd53beb12
BLAKE2b-256 604567cacdb86795393badaa62b01c56142314b5b3716d60773b7c8459b52750

See more details on using hashes here.

File details

Details for the file concave_hull-0.0.9-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for concave_hull-0.0.9-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 5e09c11db2cd3940acb55c7f9cddee70004944c9065e18b2d4d927afc4b85aae
MD5 f38eafed13b9debb29fb3dca72ddd589
BLAKE2b-256 3d0c2205b29f92257e1f9487ec87fafe66ad23392cff4b9772403a8818fa55a2

See more details on using hashes here.

File details

Details for the file concave_hull-0.0.9-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for concave_hull-0.0.9-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 ac0bece551f0f9ca7e8f0709819851c502de5ffb5cea98aea89bc04f23eb2f8b
MD5 cc21ab0ea55d44f0e7f070d9c1d32535
BLAKE2b-256 eee023c614f999b89e57fca9043c25965b7ddb5c4ee4865724951c3f85cfa430

See more details on using hashes here.

File details

Details for the file concave_hull-0.0.9-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for concave_hull-0.0.9-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1c1e276e88d91336f31515aee1070e2f76772177f47dad24e6ee2f2fe8b4b72b
MD5 9f3441b3cd5af915b598503c0609fcab
BLAKE2b-256 b5636f75f1aba7ff2119471210af8c7949e8b05ba37428d94c09bfe363965eb8

See more details on using hashes here.

File details

Details for the file concave_hull-0.0.9-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for concave_hull-0.0.9-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5e7a72867569b2ac601aa7f0ec955e01ad33358e6130a11512754b68147441ff
MD5 edce456eaed266042d3e466f93735a0e
BLAKE2b-256 8b9f748f404ae86f0783bd69e6527e71c2083eb1137ebb1934d6e972104dec7c

See more details on using hashes here.

File details

Details for the file concave_hull-0.0.9-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for concave_hull-0.0.9-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7f9efba0dd2a259b86bd4c4778ea2c439e5990b3a974e669b5e7db63dbd937c9
MD5 71cf77130f3b5d7f76f66f513437408a
BLAKE2b-256 10414994842c4d8a1c3668641bc895e6f37fccc3a67f59bafbdb0a7b65d32f51

See more details on using hashes here.

File details

Details for the file concave_hull-0.0.9-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for concave_hull-0.0.9-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4ce71ea121bf67d39df53221fe4451c5b4ebc8e80adbf2178bf1d1b21cdcff20
MD5 94aa2ca9e5693dca7049ee6854a65869
BLAKE2b-256 b93041d994da2c679753486c0de63066f0bef46930b38f9e076b355570b30a15

See more details on using hashes here.

File details

Details for the file concave_hull-0.0.9-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for concave_hull-0.0.9-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 274b27f2b2cad32cd16ebc25dd32f832e1a781b854bd7ea6afc5dec145b99e9d
MD5 c4e45cda69c470e6986b50baf2fa04ae
BLAKE2b-256 78c01bad56c9f653eb47793dc21e1cacea9ed328d38cf61f99f2307017ccc003

See more details on using hashes here.

File details

Details for the file concave_hull-0.0.9-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for concave_hull-0.0.9-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4760ac36178d7fe4e90f9a55daaa445310edbecea9c5d7374a69fe612b4ca632
MD5 390d13a2c188d826f0f94a0cb4319b22
BLAKE2b-256 74c429326cff4a2083c743d64b77052e580c140a9fb14d3d3196b9ac49daf5e2

See more details on using hashes here.

File details

Details for the file concave_hull-0.0.9-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for concave_hull-0.0.9-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7eb2a6f3e14df1818b5ad5f2199774dbe88dd03113009916f6e61028ea91e923
MD5 b1035cbf20921dd50108a53df500c6d1
BLAKE2b-256 e28bb16918fad05efaebd4809d0781a730798fb880b46314493cc522ea6cea83

See more details on using hashes here.

File details

Details for the file concave_hull-0.0.9-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for concave_hull-0.0.9-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a90dd326451f4729f70721fb2874baaf8b767178593e8ab3ceda857a0f4e9469
MD5 76bf6b5e7695c0766ea73de955e2a541
BLAKE2b-256 a7e135adc33fc747686d69c7256480b82354e1f0d585159f1a71e8e5103c844b

See more details on using hashes here.

File details

Details for the file concave_hull-0.0.9-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for concave_hull-0.0.9-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5e174a47ccd5ba0d40d7a6b3d135ff369c48703fa0c89e0c9a630d5ae3893e35
MD5 e08437d2bb296ece2788ab80df682446
BLAKE2b-256 62ad95bd396a752135b22c6f304ed121fc77c2198255c529ad1260a36259493b

See more details on using hashes here.

File details

Details for the file concave_hull-0.0.9-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for concave_hull-0.0.9-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 ba3ef4ec205d5c18277726644fff332194cca86c93be8a5f6178f23d136481f5
MD5 c8187803bd9cff9320ecedc53f7aab21
BLAKE2b-256 2d0d16274868af28be624ea091f1bcea37bebd164d60887f417372921816d0f1

See more details on using hashes here.

File details

Details for the file concave_hull-0.0.9-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for concave_hull-0.0.9-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d0ec18b0c5a378efd2a09ef85d4f695e57672b5789ef03fa6f8a807f4b360803
MD5 4361b3cf5d596880bb37ac2fba8059ad
BLAKE2b-256 bd9336674c404c4dcf9e4b812b1ec426f4e58cb35b55f7b62bd80e2413c61612

See more details on using hashes here.

File details

Details for the file concave_hull-0.0.9-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for concave_hull-0.0.9-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 66b496912298480529c22c8f5b6d5f55a822bf40bb92be282990ddd01315022f
MD5 0e2dea2c637cbf8210e9131dc7e1a08b
BLAKE2b-256 44bf14a4d16ab49bce50c89b796055f851b293a476e89f110a664110b399a62c

See more details on using hashes here.

File details

Details for the file concave_hull-0.0.9-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for concave_hull-0.0.9-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 560eccd2a613bb71635ebaca7416df5d7c8d3847bb367b49fd9fd9c8eb8c6acd
MD5 90a1c878dfc0dda022928e8dc9e27e3f
BLAKE2b-256 6f6c0a125c56f6a149ec71365dba0b7c127ba4309ff72af90ac0497d4701e01d

See more details on using hashes here.

File details

Details for the file concave_hull-0.0.9-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for concave_hull-0.0.9-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7fbb1ff4a6e5c46ef6f830380033d71b02568e74c0bfc2bff11356c4f12f41b7
MD5 c51513f6adb9439eb1601b4470b8859c
BLAKE2b-256 0f38adeec94e0853650607ae1843d06a41807e63c8752c0e92c8c371816131c1

See more details on using hashes here.

File details

Details for the file concave_hull-0.0.9-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for concave_hull-0.0.9-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 584763f0086978e31e9a058e534dabe03b541db75ad5fa9dff36371c8fdca721
MD5 fa494659ecdf92f595a2566342c39de7
BLAKE2b-256 1264632205908dfba0f267d20e361f73f531b51faae8aad1e39e04807fca7daa

See more details on using hashes here.

File details

Details for the file concave_hull-0.0.9-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for concave_hull-0.0.9-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 34d4e26b09ea1a6090ac9bb3287b5c9153567530499550513906afe1211ab3da
MD5 4c34728e92ad0cdbae69daacdbe48f62
BLAKE2b-256 6c4e8cc312575384253cb1b20d9476f754823fa67f74d30cc77b95d2c6fdc7c3

See more details on using hashes here.

File details

Details for the file concave_hull-0.0.9-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for concave_hull-0.0.9-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 aa78991f22a3922ad7f22894a6ee0ba30223953e1c5c87350dff61b8b93d1772
MD5 f7e349057f4db14aabddcf0fd0a1f21f
BLAKE2b-256 eb59b32662faf87def35a3fa401aaa2a3513d61374584d71ed1c79fb57bda146

See more details on using hashes here.

File details

Details for the file concave_hull-0.0.9-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for concave_hull-0.0.9-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e0ff94761b33ffac21a9dc32e56298c58a964c8e02e7c6195fd07171f88afe12
MD5 5562babc6d0ca27621e1fc651a3af217
BLAKE2b-256 24aba5e771619344ffbc765acbdd0c3aa5dbb3f7e60362a16842ef459b359831

See more details on using hashes here.

File details

Details for the file concave_hull-0.0.9-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for concave_hull-0.0.9-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f40524e855f4e6365855fd39968205eb8466730e2830fbe5d15c353040a15d1e
MD5 561d7702d8e5cc7794c65ab7d3549dae
BLAKE2b-256 1cda0c7d64f12fe87b2e1ab6cc78fb2294bb6a5a943a08775b5bf97369af7749

See more details on using hashes here.

File details

Details for the file concave_hull-0.0.9-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for concave_hull-0.0.9-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 053e4b053fed3825694e744866951d2a9695b52f9bde042aec9d94bcc86a17ca
MD5 13bba325a2ace933328b2fefb96fc693
BLAKE2b-256 386cb45da5a7c27f9875057f51c7dd0a1f0a491dc065ae4b7d5f70ce7ec0fb25

See more details on using hashes here.

File details

Details for the file concave_hull-0.0.9-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for concave_hull-0.0.9-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 248daa73b0abc73fbfe5a17f8c8c582c08e816ba8213ba53bff2476c0a9e9e43
MD5 319fc9b1faf144953981bf2f11471fcc
BLAKE2b-256 35998a214268011153b3bc2ff6e2485e535c34ff78944621d831a1b8091e2811

See more details on using hashes here.

File details

Details for the file concave_hull-0.0.9-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for concave_hull-0.0.9-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d5f5ba5d2409a4d98a66df7673bad2852b1036439ec6163f5f69ab6d8070aa65
MD5 33bdfb950f887009aa99a9288df0ea09
BLAKE2b-256 574697e7ed88e8f84be6144d2a5d3897097f95762b437bc85e108cebd731b370

See more details on using hashes here.

File details

Details for the file concave_hull-0.0.9-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for concave_hull-0.0.9-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 99a189e4b1c3ff9f21ed7c317da23099281805f53862cbd4f25d09bfe8e32e74
MD5 900af7e7f79a587f385b56ed2f9b0af3
BLAKE2b-256 9709fd513a99632ea03089893967394ac3459b079445ff36d4deccfcca394cdc

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page