Skip to main content

No project description provided

Project description

ConnectorX status discussions Downloads

Load data from to , the fastest way.

ConnectorX enables you to load data from databases into Python in the fastest and most memory efficient way.

What you need is one line of code:

import connectorx as cx

cx.read_sql("postgresql://username:password@server:port/database", "SELECT * FROM lineitem")

Optionally, you can accelerate the data loading using parallelism by specifying a partition column.

import connectorx as cx

cx.read_sql("postgresql://username:password@server:port/database", "SELECT * FROM lineitem", partition_on="l_orderkey", partition_num=10)

The function will partition the query by evenly splitting the specified column to the amount of partitions. ConnectorX will assign one thread for each partition to load and write data in parallel. Currently, we support partitioning on numerical columns (cannot contain NULL) for SPJA queries.

Experimental: We are now providing federated query support, you can write a single query to join tables from two or more databases!

import connectorx as cx
db1 = "postgresql://username1:password1@server1:port1/database1"
db2 = "postgresql://username2:password2@server2:port2/database2"
cx.read_sql({"db1": db1, "db2": db2}, "SELECT * FROM db1.nation n, db2.region r where n.n_regionkey = r.r_regionkey")

By default, we pushdown all joins from the same data source. More details for setup and configuration can be found here.

Check out more detailed usage and examples here. A general introduction of the project can be found in this blog post.

Installation

pip install connectorx

Check out here to see how to build python wheel from source.

Performance

We compared different solutions in Python that provides the read_sql function, by loading a 10x TPC-H lineitem table (8.6GB) from Postgres into a DataFrame, with 4 cores parallelism.

Time chart, lower is better.

time chart

Memory consumption chart, lower is better.

memory chart

In conclusion, ConnectorX uses up to 3x less memory and 21x less time (3x less memory and 13x less time compared with Pandas.). More on here.

How does ConnectorX achieve a lightning speed while keeping the memory footprint low?

We observe that existing solutions more or less do data copy multiple times when downloading the data. Additionally, implementing a data intensive application in Python brings additional cost.

ConnectorX is written in Rust and follows "zero-copy" principle. This allows it to make full use of the CPU by becoming cache and branch predictor friendly. Moreover, the architecture of ConnectorX ensures the data will be copied exactly once, directly from the source to the destination.

How does ConnectorX download the data?

Upon receiving the query, e.g. SELECT * FROM lineitem, ConnectorX will first get the schema of the result set. Depending on the data source, this process may envolve issuing a LIMIT 1 query SELECT * FROM lineitem LIMIT 1.

Then, if partition_on is specified, ConnectorX will issue SELECT MIN($partition_on), MAX($partition_on) FROM (SELECT * FROM lineitem) to know the range of the partition column. After that, the original query is split into partitions based on the min/max information, e.g. SELECT * FROM (SELECT * FROM lineitem) WHERE $partition_on > 0 AND $partition_on < 10000. ConnectorX will then run a count query to get the partition size (e.g. SELECT COUNT(*) FROM (SELECT * FROM lineitem) WHERE $partition_on > 0 AND $partition_on < 10000). If the partition is not specified, the count query will be SELECT COUNT(*) FROM (SELECT * FROM lineitem).

Finally, ConnectorX will use the schema info as well as the count info to allocate memory and download data by executing the queries normally.

Once the downloading begins, there will be one thread for each partition so that the data are downloaded in parallel at the partition level. The thread will issue the query of the corresponding partition to the database and then write the returned data to the destination row-wise or column-wise (depends on the database) in a streaming fashion.

Supported Sources & Destinations

Example connection string, supported protocols and data types for each data source can be found here.

For more planned data sources, please check out our discussion.

Sources

  • Postgres
  • Mysql
  • Mariadb (through mysql protocol)
  • Sqlite
  • Redshift (through postgres protocol)
  • Clickhouse (through mysql protocol)
  • SQL Server
  • Azure SQL Database (through mssql protocol)
  • Oracle
  • Big Query
  • Trino
  • ODBC (WIP)
  • ...

Destinations

  • Pandas
  • PyArrow
  • Modin (through Pandas)
  • Dask (through Pandas)
  • Polars (through PyArrow)

Documentation

Doc: https://sfu-db.github.io/connector-x/intro.html Rust docs: stable nightly

Next Plan

Checkout our discussion to participate in deciding our next plan!

Historical Benchmark Results

https://sfu-db.github.io/connector-x/dev/bench/

Developer's Guide

Please see Developer's Guide for information about developing ConnectorX.

Supports

You are always welcomed to:

  1. Ask questions & propose new ideas in our github discussion.
  2. Ask questions in stackoverflow. Make sure to have #connectorx attached.

Organizations and Projects using ConnectorX

To add your project/organization here, reply our post here

Citing ConnectorX

If you use ConnectorX, please consider citing the following paper:

Xiaoying Wang, Weiyuan Wu, Jinze Wu, Yizhou Chen, Nick Zrymiak, Changbo Qu, Lampros Flokas, George Chow, Jiannan Wang, Tianzheng Wang, Eugene Wu, Qingqing Zhou. ConnectorX: Accelerating Data Loading From Databases to Dataframes. VLDB 2022.

BibTeX entry:

@article{connectorx2022,
  author    = {Xiaoying Wang and Weiyuan Wu and Jinze Wu and Yizhou Chen and Nick Zrymiak and Changbo Qu and Lampros Flokas and George Chow and Jiannan Wang and Tianzheng Wang and Eugene Wu and Qingqing Zhou},
  title     = {ConnectorX: Accelerating Data Loading From Databases to Dataframes},
  journal   = {Proc. {VLDB} Endow.},
  volume    = {15},
  number    = {11},
  pages     = {2994--3003},
  year      = {2022},
  url       = {https://www.vldb.org/pvldb/vol15/p2994-wang.pdf},
}

Contributors

Jazzinghen
Michele Bianchi
vc1492a
Valentino Constantinou
Vincenthays
Vincent HAYS
wseaton
Will Eaton
holicc
Joe
jsjasonseba
Jason
pangjunrong
Pang Jun Rong (Jayden)
EricFecteau
EricFecteau
dbascoules
dbascoules
wangxiaoying
Xiaoying Wang
dovahcrow
Weiyuan Wu
Wukkkinz-0725
Null
Yizhou150
Yizhou
zen-xu
ZhengYu, Xu
domnikl
Dominik Liebler
AnatolyBuga
Anatoly Bugakov
Jordan-M-Young
Jordan M. Young
auyer
Rafael Passos
jinzew
Null
gruuya
Marko Grujic
alswang18
Alec Wang
lBilali
Lulzim Bilali
ritchie46
Ritchie Vink
davidhewitt
David Hewitt
houqp
QP Hou
wKollendorf
Null
CBQu
CbQu
quambene
Null
chitralverma
Chitral Verma
jorgecarleitao
Jorge Leitao
glennpierce
Glenn Pierce
tvandelooij
tvandelooij
tschm
Thomas Schmelzer
kongscn
Shel Kong
maxb2
Matthew Anderson
JakkuSakura
Jakku Sakura
therealhieu
Hieu Minh Nguyen
FerriLuli
FerriLuli
quixoten
Devin Christensen
DeflateAwning
DeflateAwning
alexander-beedie
Alexander Beedie
MatsMoll
Mats Eikeland Mollestad
rursprung
Ralph Ursprung
albcunha
Null
kotval
Kotval
messense
Messense
phanindra-ramesh
Null
surister
Ivan
venkashank
Null
z3z1ma
Alexander Butler
zemelLeong
zemel leong
zzzdong
Null
marianoguerra
Mariano Guerra
kevinheavey
Kevin Heavey
kayhoogland
Kay Hoogland
deepsourcebot
DeepSource Bot
bealdav
David Beal
AndrewJackson2020
Andrew Jackson
Cabbagec
Brandon
Amar1729
Amar Paul
aljazerzen
Aljaž Mur Eržen
aimtsou
Aimilios Tsouvelekakis

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

connectorx-0.4.5-cp314-none-win_amd64.whl (34.6 MB view details)

Uploaded CPython 3.14Windows x86-64

connectorx-0.4.5-cp314-cp314-manylinux_2_28_x86_64.whl (43.8 MB view details)

Uploaded CPython 3.14manylinux: glibc 2.28+ x86-64

connectorx-0.4.5-cp314-cp314-manylinux_2_28_aarch64.whl (43.7 MB view details)

Uploaded CPython 3.14manylinux: glibc 2.28+ ARM64

connectorx-0.4.5-cp314-cp314-macosx_11_0_arm64.whl (36.0 MB view details)

Uploaded CPython 3.14macOS 11.0+ ARM64

connectorx-0.4.5-cp314-cp314-macosx_10_7_x86_64.whl (37.9 MB view details)

Uploaded CPython 3.14macOS 10.7+ x86-64

connectorx-0.4.5-cp313-none-win_amd64.whl (34.6 MB view details)

Uploaded CPython 3.13Windows x86-64

connectorx-0.4.5-cp313-cp313-manylinux_2_28_x86_64.whl (43.8 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.28+ x86-64

connectorx-0.4.5-cp313-cp313-manylinux_2_28_aarch64.whl (43.7 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.28+ ARM64

connectorx-0.4.5-cp313-cp313-macosx_11_0_arm64.whl (36.0 MB view details)

Uploaded CPython 3.13macOS 11.0+ ARM64

connectorx-0.4.5-cp313-cp313-macosx_10_7_x86_64.whl (37.9 MB view details)

Uploaded CPython 3.13macOS 10.7+ x86-64

connectorx-0.4.5-cp312-none-win_amd64.whl (34.6 MB view details)

Uploaded CPython 3.12Windows x86-64

connectorx-0.4.5-cp312-cp312-manylinux_2_28_x86_64.whl (43.8 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.28+ x86-64

connectorx-0.4.5-cp312-cp312-manylinux_2_28_aarch64.whl (43.7 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.28+ ARM64

connectorx-0.4.5-cp312-cp312-macosx_11_0_arm64.whl (36.0 MB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

connectorx-0.4.5-cp312-cp312-macosx_10_7_x86_64.whl (37.9 MB view details)

Uploaded CPython 3.12macOS 10.7+ x86-64

connectorx-0.4.5-cp311-none-win_amd64.whl (34.7 MB view details)

Uploaded CPython 3.11Windows x86-64

connectorx-0.4.5-cp311-cp311-manylinux_2_28_x86_64.whl (43.8 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.28+ x86-64

connectorx-0.4.5-cp311-cp311-manylinux_2_28_aarch64.whl (43.7 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.28+ ARM64

connectorx-0.4.5-cp311-cp311-macosx_11_0_arm64.whl (36.0 MB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

connectorx-0.4.5-cp311-cp311-macosx_10_7_x86_64.whl (37.9 MB view details)

Uploaded CPython 3.11macOS 10.7+ x86-64

connectorx-0.4.5-cp310-none-win_amd64.whl (34.6 MB view details)

Uploaded CPython 3.10Windows x86-64

connectorx-0.4.5-cp310-cp310-manylinux_2_28_x86_64.whl (43.8 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.28+ x86-64

connectorx-0.4.5-cp310-cp310-manylinux_2_28_aarch64.whl (43.7 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.28+ ARM64

connectorx-0.4.5-cp310-cp310-macosx_11_0_arm64.whl (36.0 MB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

connectorx-0.4.5-cp310-cp310-macosx_10_7_x86_64.whl (37.9 MB view details)

Uploaded CPython 3.10macOS 10.7+ x86-64

File details

Details for the file connectorx-0.4.5-cp314-none-win_amd64.whl.

File metadata

  • Download URL: connectorx-0.4.5-cp314-none-win_amd64.whl
  • Upload date:
  • Size: 34.6 MB
  • Tags: CPython 3.14, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.12.3

File hashes

Hashes for connectorx-0.4.5-cp314-none-win_amd64.whl
Algorithm Hash digest
SHA256 2073970532a8e6e2a8a2c0b163497eb8e58216e28fdab6693fcd7e58bfc47bfc
MD5 99188a3c347d6fad1bd45483d11c896d
BLAKE2b-256 573a5e1a7cb3b0175c249c232f487918494ec7e26c13f3d543a55c8c7752b993

See more details on using hashes here.

File details

Details for the file connectorx-0.4.5-cp314-cp314-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for connectorx-0.4.5-cp314-cp314-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 cc01ca122f649e62707f49f7220ba1ae67961b260e2dcff9e8647ea9915a01cf
MD5 c8e77ff18d00fa00ad38bcc210c0f73e
BLAKE2b-256 dc97525b11d7e3c3a286d83dc138f4e4ef948307338527b442be8fa3b1b379d7

See more details on using hashes here.

File details

Details for the file connectorx-0.4.5-cp314-cp314-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for connectorx-0.4.5-cp314-cp314-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 38ad8a032fddf25c36c6911d857fbe54220fe28439f02a4beb273b29bdef1eb8
MD5 74a66248a2c858fc78cddd2150e93c6c
BLAKE2b-256 7f1a031079b5c597b83df8548012095c23c10d471e6a4c29617d55dd4cf5a9b8

See more details on using hashes here.

File details

Details for the file connectorx-0.4.5-cp314-cp314-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for connectorx-0.4.5-cp314-cp314-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3fd7788294417cbbb3811f8942e4fe3b4c190b80627a3c706ceae6c321824bcf
MD5 3d4dd520b2a7b05bcded9cd4430f7379
BLAKE2b-256 f4386243f6c83e9515ebab87c0b21be1c2599bd3f6148b8905802b12dba4bf83

See more details on using hashes here.

File details

Details for the file connectorx-0.4.5-cp314-cp314-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for connectorx-0.4.5-cp314-cp314-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 3ddfe372065b974365bff3b383e39c29cad468c0e7556543dd23753446c441ed
MD5 4c306b71dc75fd6d59ca647d3fbc4d38
BLAKE2b-256 79768f89e0d1c973af07eed12c584c52c33b51dc119b7ed85e3c0f91615bfec6

See more details on using hashes here.

File details

Details for the file connectorx-0.4.5-cp313-none-win_amd64.whl.

File metadata

  • Download URL: connectorx-0.4.5-cp313-none-win_amd64.whl
  • Upload date:
  • Size: 34.6 MB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.12.3

File hashes

Hashes for connectorx-0.4.5-cp313-none-win_amd64.whl
Algorithm Hash digest
SHA256 50c20558beff2719be34ff325213526c1700c3a20743e9e0ba592774ebc9cc92
MD5 f41e5d1dd2bbfd3aded779904a43e5ee
BLAKE2b-256 403254a45bc796b2e5a572bb76c17ebaf971ec57bf9960ba23731d76a7f70962

See more details on using hashes here.

File details

Details for the file connectorx-0.4.5-cp313-cp313-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for connectorx-0.4.5-cp313-cp313-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 ab1d62a26350055c5e901daa4d6dddb75b11addb923797158c809dffc4f0ac9e
MD5 c35ab50746d9132445e716130b26a6e3
BLAKE2b-256 0a9d3bae67718e0bfbefba41959f2f1dc0a5765392aea311b02d98457c8efd34

See more details on using hashes here.

File details

Details for the file connectorx-0.4.5-cp313-cp313-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for connectorx-0.4.5-cp313-cp313-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 31a65ff4ec8fde7ea7aa2812f2b21e7a512a3216b1b22ca1b02d3975b0bf1e75
MD5 997c63609b40acf0a015e1d4350f4264
BLAKE2b-256 a68e96abe0aecb5e121a80f64ded08c4d8b4115df85f1b246a2680c9f29d4d3d

See more details on using hashes here.

File details

Details for the file connectorx-0.4.5-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for connectorx-0.4.5-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f5d4754069644a712bd3105345e4f7c680420c5bb1d1264070cda058c7f07fb3
MD5 f85eb0a3ca36a379ae5ee1a280cd8a96
BLAKE2b-256 88596a4542bc57c53e99b366a8f377ebb8c9b9915d08a8915726c4a5f0fd8219

See more details on using hashes here.

File details

Details for the file connectorx-0.4.5-cp313-cp313-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for connectorx-0.4.5-cp313-cp313-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 ff2f4236a0fc14cd724b03df1f11c03b714442f4381575465f7d0f4f91135766
MD5 03054f786a0840a3ab91cce4e1d2e746
BLAKE2b-256 10de65de3629f3bbb0597cc3393078085a27b5b52a9fa5b701a60c1c11a9868c

See more details on using hashes here.

File details

Details for the file connectorx-0.4.5-cp312-none-win_amd64.whl.

File metadata

  • Download URL: connectorx-0.4.5-cp312-none-win_amd64.whl
  • Upload date:
  • Size: 34.6 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.12.3

File hashes

Hashes for connectorx-0.4.5-cp312-none-win_amd64.whl
Algorithm Hash digest
SHA256 0737254429e22e5012e1fe6a849112da38abb9b56743b3b8c8a1f902e5270e75
MD5 4313bca981fa856a00e76d7771ecb637
BLAKE2b-256 e003350aafe6bc38a3851744bfab7c4d61bd16500ff6b20dfcb98054b7adb56d

See more details on using hashes here.

File details

Details for the file connectorx-0.4.5-cp312-cp312-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for connectorx-0.4.5-cp312-cp312-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 3863bc71677d6314b60cb1e1489a650114d37d8d9f58f2df038cae4a82d2ffc5
MD5 d6892d4f1949a3db98cf8edfbabb3d37
BLAKE2b-256 3e4c54cbfabd1866f3f8657e348f3a496fbde0a138d66a9f2f024b28b4db1c2e

See more details on using hashes here.

File details

Details for the file connectorx-0.4.5-cp312-cp312-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for connectorx-0.4.5-cp312-cp312-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 c68cc9c6bff737d3c9fb8735b27ecc8474238ef640abb701ee0ab213c6c95f8c
MD5 72d733566cdcecb6089e5c48a7c18e0d
BLAKE2b-256 14befa9c3a14b6c10c899d0fb93f8ea549285db271c9899900f7eb21c3cdeb9a

See more details on using hashes here.

File details

Details for the file connectorx-0.4.5-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for connectorx-0.4.5-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 27539e03408705f318572b163c419572a114fdc9baf4d1e6cd746bb87f573cf2
MD5 1f09964d0ec2758f546db59e2728f981
BLAKE2b-256 235ce1e82bcb235fa52280696b01a975535800c0b8c3c12af7c5ddbb42a39010

See more details on using hashes here.

File details

Details for the file connectorx-0.4.5-cp312-cp312-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for connectorx-0.4.5-cp312-cp312-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 25efda2317f40e6536582c3dd4f57a8a31c7e5969d708a674272c05591e6f5a2
MD5 1ffe39c846919366360f1b6b33f0036f
BLAKE2b-256 74c377aebad14179cf1a8cfdc5e84ea1bac4efb82de270ca6fc7ff914f8ec601

See more details on using hashes here.

File details

Details for the file connectorx-0.4.5-cp311-none-win_amd64.whl.

File metadata

  • Download URL: connectorx-0.4.5-cp311-none-win_amd64.whl
  • Upload date:
  • Size: 34.7 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.12.3

File hashes

Hashes for connectorx-0.4.5-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 234af0b6ab4a12b64e3818ebea1eb98cc8b47650280fb40924b43e2f1611acb4
MD5 c770cd3ed0a86553746a59ee090d7a08
BLAKE2b-256 2fca9ca19ce638639e5b07b96e28815f464c2eba2b876a22b3f8c0297034f172

See more details on using hashes here.

File details

Details for the file connectorx-0.4.5-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for connectorx-0.4.5-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 f139bbfa34840b89d0a5ec760026a9268c18c63fb739568ecbc77660d3e4fc1f
MD5 4230effd9610313961bf3daca1d4c7f3
BLAKE2b-256 9a37d6dffc001562b7109c8a18604f5a52445187c6bede23e5b737248d172f15

See more details on using hashes here.

File details

Details for the file connectorx-0.4.5-cp311-cp311-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for connectorx-0.4.5-cp311-cp311-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 e605b5eca75fe63117e5fb93f94e940ede0513340671631da35bdb5a035f8163
MD5 0027baba8d865b7d2f23829ef5774637
BLAKE2b-256 ac3b18a4bbfa2fbba7a45539f2fd9fc198bf483984b13b61781f905682d1992c

See more details on using hashes here.

File details

Details for the file connectorx-0.4.5-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for connectorx-0.4.5-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0ea5feccc2fb3471fa72c1d920bb4ed17ba1b18aedb89dee5ee6009138e35260
MD5 e3019b818d3d8dcab441202bce1902da
BLAKE2b-256 1fd2af67eb73865372b1b06057254e04821e31bf8ea84129d38f862e11d10fc7

See more details on using hashes here.

File details

Details for the file connectorx-0.4.5-cp311-cp311-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for connectorx-0.4.5-cp311-cp311-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 3fa0811081c84befde6d3aa661ecb17b95be9e3851e20009fd27d0e1b925ceb9
MD5 32685f35141d3324899d0e8092ef322b
BLAKE2b-256 f841183fd02ed424747f50b118a716334ca57569c5c9850fcda900d65a1c3d84

See more details on using hashes here.

File details

Details for the file connectorx-0.4.5-cp310-none-win_amd64.whl.

File metadata

  • Download URL: connectorx-0.4.5-cp310-none-win_amd64.whl
  • Upload date:
  • Size: 34.6 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.12.3

File hashes

Hashes for connectorx-0.4.5-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 62920c9fa389e5a7bcc0702d7dc6a8e57f2c7729d384a3cd9fdc8ece6e7a5678
MD5 66a06c2fb4756439d137115c5252f8e4
BLAKE2b-256 d733c7ec696bd53b3f5f902fadcbd7015238446d71336bdb9b8ab69805415df7

See more details on using hashes here.

File details

Details for the file connectorx-0.4.5-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for connectorx-0.4.5-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 ff8b927e8a4f896af8e67562b646f8d100b1bcde37c71ce8d978958d5da75f96
MD5 b27831d8fb06ba6f091ceaa7b6b5a7e4
BLAKE2b-256 5d9e629d03bba399f64f02d3ef3c36476caa8d567c5dd522fac589c4f7b63816

See more details on using hashes here.

File details

Details for the file connectorx-0.4.5-cp310-cp310-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for connectorx-0.4.5-cp310-cp310-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 cb44836dff4c9714de99e225a1a3e61c73c886cd7b5259413c5ab298f88c7978
MD5 42dfeae0d8c8cfaaf9730b5ee23a97ba
BLAKE2b-256 43ad6d8b531e8387a3d812694e75034a5b5c473e3515d31d4c4c642b69c34628

See more details on using hashes here.

File details

Details for the file connectorx-0.4.5-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for connectorx-0.4.5-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9a7d18d055a9bc5eeb748efb11c5d6255ca401051b8bd5c02fa114528c24b85b
MD5 f925e5c8c247300d78ef807ea7f66d5c
BLAKE2b-256 705020cd70a94585d743a3d2b4de66d6bbe8e325c14d12a082ead227f00c1ae5

See more details on using hashes here.

File details

Details for the file connectorx-0.4.5-cp310-cp310-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for connectorx-0.4.5-cp310-cp310-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 f72aa5a08242e1ee45b6d25319e9e3ba5d62963e3c56b80f2922aec4d70171fa
MD5 89e1f1b889371f1ee8cb0982809d53c9
BLAKE2b-256 778fe75f21c24a36d37d814263626a5960e1c17decb905bd430a1b1b8ad48769

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page