Skip to main content

Auxillary models for controlnet

Project description

ControlNet auxiliary models

This is a PyPi installable package of lllyasviel's ControlNet Annotators

The code is copy-pasted from the respective folders in https://github.com/lllyasviel/ControlNet/tree/main/annotator and connected to the 🤗 Hub.

All credit & copyright goes to https://github.com/lllyasviel .

Install

pip install -U controlnet-aux

DWPose

To use DWPose, you can install easy-dwpose. It's a lightweight package that uses ONNX models without requiring the installation of MMDetection, MMCV, or MMPose.

pip install easy-dwpose
from easy_dwpose import DWposeDetector

device = "cuda:0" if torch.cuda.is_available() else "cpu"
dwpose = DWposeDetector(device=device)

skeleton = dwpose(input_image, output_type="pil", include_hands=True, include_face=True)

Usage

You can use the processor class, which can load each of the auxiliary models with the following code

import requests
from PIL import Image
from io import BytesIO

from controlnet_aux.processor import Processor

# load image
url = "https://huggingface.co/lllyasviel/sd-controlnet-openpose/resolve/main/images/pose.png"

response = requests.get(url)
img = Image.open(BytesIO(response.content)).convert("RGB").resize((512, 512))

# load processor from processor_id
# options are:
# ["canny", "depth_leres", "depth_leres++", "depth_midas", "depth_zoe", "lineart_anime",
#  "lineart_coarse", "lineart_realistic", "mediapipe_face", "mlsd", "normal_bae", "normal_midas",
#  "openpose", "openpose_face", "openpose_faceonly", "openpose_full", "openpose_hand",
#  "scribble_hed, "scribble_pidinet", "shuffle", "softedge_hed", "softedge_hedsafe",
#  "softedge_pidinet", "softedge_pidsafe", "dwpose"]
processor_id = 'scribble_hed'
processor = Processor(processor_id)

processed_image = processor(img, to_pil=True)

Each model can be loaded individually by importing and instantiating them as follows

from PIL import Image
import requests
from io import BytesIO
from controlnet_aux import HEDdetector, MidasDetector, MLSDdetector, OpenposeDetector, PidiNetDetector, NormalBaeDetector, LineartDetector, LineartAnimeDetector, CannyDetector, ContentShuffleDetector, ZoeDetector, MediapipeFaceDetector, SamDetector, LeresDetector, DWposeDetector

# load image
url = "https://huggingface.co/lllyasviel/sd-controlnet-openpose/resolve/main/images/pose.png"

response = requests.get(url)
img = Image.open(BytesIO(response.content)).convert("RGB").resize((512, 512))

# load checkpoints
hed = HEDdetector.from_pretrained("lllyasviel/Annotators")
midas = MidasDetector.from_pretrained("lllyasviel/Annotators")
mlsd = MLSDdetector.from_pretrained("lllyasviel/Annotators")
open_pose = OpenposeDetector.from_pretrained("lllyasviel/Annotators")
pidi = PidiNetDetector.from_pretrained("lllyasviel/Annotators")
normal_bae = NormalBaeDetector.from_pretrained("lllyasviel/Annotators")
lineart = LineartDetector.from_pretrained("lllyasviel/Annotators")
lineart_anime = LineartAnimeDetector.from_pretrained("lllyasviel/Annotators")
zoe = ZoeDetector.from_pretrained("lllyasviel/Annotators")
sam = SamDetector.from_pretrained("ybelkada/segment-anything", subfolder="checkpoints")
mobile_sam = SamDetector.from_pretrained("dhkim2810/MobileSAM", model_type="vit_t", filename="mobile_sam.pt")
leres = LeresDetector.from_pretrained("lllyasviel/Annotators")
teed = TEEDdetector.from_pretrained("fal-ai/teed", filename="5_model.pth")
anyline = AnylineDetector.from_pretrained(
    "TheMistoAI/MistoLine", filename="MTEED.pth", subfolder="Anyline"
)

# specify configs, ckpts and device, or it will be downloaded automatically and use cpu by default
# det_config: ./src/controlnet_aux/dwpose/yolox_config/yolox_l_8xb8-300e_coco.py
# det_ckpt: https://download.openmmlab.com/mmdetection/v2.0/yolox/yolox_l_8x8_300e_coco/yolox_l_8x8_300e_coco_20211126_140236-d3bd2b23.pth
# pose_config: ./src/controlnet_aux/dwpose/dwpose_config/dwpose-l_384x288.py
# pose_ckpt: https://huggingface.co/wanghaofan/dw-ll_ucoco_384/resolve/main/dw-ll_ucoco_384.pth
import torch
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
dwpose = DWposeDetector(det_config=det_config, det_ckpt=det_ckpt, pose_config=pose_config, pose_ckpt=pose_ckpt, device=device)

# instantiate
canny = CannyDetector()
content = ContentShuffleDetector()
face_detector = MediapipeFaceDetector()
lineart_standard = LineartStandardDetector()


# process
processed_image_hed = hed(img)
processed_image_midas = midas(img)
processed_image_mlsd = mlsd(img)
processed_image_open_pose = open_pose(img, hand_and_face=True)
processed_image_pidi = pidi(img, safe=True)
processed_image_normal_bae = normal_bae(img)
processed_image_lineart = lineart(img, coarse=True)
processed_image_lineart_anime = lineart_anime(img)
processed_image_zoe = zoe(img)
processed_image_sam = sam(img)
processed_image_leres = leres(img)
processed_image_teed = teed(img, detect_resolution=1024)
processed_image_anyline = anyline(img, detect_resolution=1280)

processed_image_canny = canny(img)
processed_image_content = content(img)
processed_image_mediapipe_face = face_detector(img)
processed_image_dwpose = dwpose(img)
processed_image_lineart_standard = lineart_standard(img, detect_resolution=1024)

Image resolution

In order to maintain the image aspect ratio, detect_resolution, image_resolution and images sizes need to be using multiple of 64.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

controlnet_aux-0.0.10.tar.gz (215.0 kB view details)

Uploaded Source

Built Distribution

controlnet_aux-0.0.10-py3-none-any.whl (290.4 kB view details)

Uploaded Python 3

File details

Details for the file controlnet_aux-0.0.10.tar.gz.

File metadata

  • Download URL: controlnet_aux-0.0.10.tar.gz
  • Upload date:
  • Size: 215.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.10.16

File hashes

Hashes for controlnet_aux-0.0.10.tar.gz
Algorithm Hash digest
SHA256 31dc265a54448bdcee033a130b47423c80587fa35ccac752113af1b4d48f5183
MD5 5ea0a4018c28b948b6a583e7f096d41e
BLAKE2b-256 14ad2eb8cd9a8e17e35b9e5d39ad29afdde8fe810bda85e6e59117050519955d

See more details on using hashes here.

File details

Details for the file controlnet_aux-0.0.10-py3-none-any.whl.

File metadata

File hashes

Hashes for controlnet_aux-0.0.10-py3-none-any.whl
Algorithm Hash digest
SHA256 cad3480d62c7df1ae569258a659c88d730873323d2adbb9f6f7aebd87917df3b
MD5 a0ada1f8540c2e2230b87276ef430db4
BLAKE2b-256 513be1608b5bca98bcdaa2c74286fcc0457f3c0a8c99e25e3e4065c184f92c7f

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page