Skip to main content

convtools is a python library to declaratively define conversions for processing collections, doing complex aggregations and joins.

Project description

convtools is a python library to declaratively define conversions for processing collections, doing complex aggregations and joins.

Once a conversion is defined, it can be compiled into an ad hoc code OR be reused for building more complex conversions. Tests Status Documentation Status Downloads Chat on Gitter

What’s the workflow?

  1. from convtools import conversion as c
  2. define conversions
  3. (optional) store them somewhere for further reuse
  4. call gen_converter method to compile the conversion into a function, written with an ad hoc code
  5. (optional) it’s totally fine to generate converters at runtime, for simple conversions it takes less than 0.1-0.2 milliseconds to get compiled.

Please, see simple examples of group by, aggregate and join conversions below.

from convtools import conversion as c

def test_doc__index_intro():

    # ======== #
    # GROUP BY #
    # ======== #
    input_data = [
        {"a": 5, "b": "foo"},
        {"a": 10, "b": "foo"},
        {"a": 10, "b": "bar"},
        {"a": 10, "b": "bar"},
        {"a": 20, "b": "bar"},

    conv = (
                "b": c.item("b"),
                "a_first": c.ReduceFuncs.First(c.item("a")),
                "a_max": c.ReduceFuncs.Max(c.item("a")),

    assert conv(input_data) == [
        {"b": "foo", "a_first": 5, "a_max": 10},
        {"b": "bar", "a_first": 10, "a_max": 20},

    # ========= #
    # ========= #
    conv = c.aggregate(
            # list of "a" values where "b" equals to "bar"
            "a": c.ReduceFuncs.Array(c.item("a"), where=c.item("b") == "bar"),
            # "b" value of a row where "a" has Max value
            "b": c.ReduceFuncs.MaxRow(
            ).item("b", default=None),

    assert conv(input_data) == {"a": [10, 10, 20], "b": "bar"}

    # ==== #
    # JOIN #
    # ==== #
    collection_1 = [
        {"id": 1, "name": "Nick"},
        {"id": 2, "name": "Joash"},
        {"id": 3, "name": "Bob"},
    collection_2 = [
        {"ID": "3", "age": 17, "country": "GB"},
        {"ID": "2", "age": 21, "country": "US"},
        {"ID": "1", "age": 18, "country": "CA"},
    input_data = (collection_1, collection_2)

    conv = (
                c.LEFT.item("id") == c.RIGHT.item("ID").as_type(int),
                c.RIGHT.item("age") >= 18,
                    "id": c.item(0, "id"),
                    "name": c.item(0, "name"),
                    "age": c.item(1, "age", default=None),
                    "country": c.item(1, "country", default=None),

    assert conv(input_data) == [
        {"id": 1, "name": "Nick", "age": 18, "country": "CA"},
        {"id": 2, "name": "Joash", "age": 21, "country": "US"},
        {"id": 3, "name": "Bob", "age": None, "country": None},

Also there are more after the Installation section.

Why would you need this?

  • you believe that Python is awesome enough to have powerful aggregations and joins
  • you like the idea of having something else write an unpleasant ad hoc code for you
  • you need to serialize/deserialize objects
  • you need to define dynamic data transforms based on some input, which becomes available at runtime
  • you want to reuse field-wise transformations across the project without worrying about huge overhead of calling tens of functions per row/object, especially when there are thousands of them to be processed

Is it any different from tools like Pandas?

  • convtools doesn’t need to wrap data in any container to provide useful API, it just writes ad hoc python code under the hood
  • convtools is a lightweight library with no dependencies (however optional black is highly recommended for pretty-printing generated code when debugging)
  • convtools is about defining and reusing conversions – declarative approach, while wrapping data in high-performance containers is more of being imperative


The speed of convtools comes from the approach of generating code & compiling conversion functions, which don’t have any generic code like superfluous loops, ifs, unnecessary function calls, etc.

So you can keep following the DRY principle by storing and reusing the code on the python expression level, but at the same time be able to run the gen_converter and get the compiled code which doesn’t care about being DRY and is generated to be highly specialized for the specific need.

There are group_by & aggregate conversions with many useful reducers:

  • from common Sum, Max
  • and less widely supported First/Last, Array/ArrayDistinct
  • to DictSum-like ones (for nested aggregation) and MaxRow/MinRow (for finding an object with max/min value and further processing)

There is a join conversion (inner, left, right, outer, cross are supported), which processes 2 iterables and returns a generator of joined pairs.

Thanks to pipes & labels it’s possible to define multiple pipelines of data processing, including branching and merging of them.

Tapping allows to add mutation steps not to rebuild objects from the scratch at every step.

Every conversion:
  • contains the information of how to transform an input
  • can be piped into another conversion (same as wrapping)
  • can be labeled to be reused further in the conversions chain
  • has a method gen_converter returning a function compiled at runtime
  • despite being compiled at runtime, is debuggable with pdb due to linecache populating.


pip install convtools

All-in-one example #1: deserialization & data preps

from datetime import date, datetime
from decimal import Decimal

from convtools import conversion as c

def test_doc__index_deserialization():
    class Employee:
        def __init__(self, **kwargs):
            self.kwargs = kwargs

    input_data = {
        "objects": [
                "id": 1,
                "first_name": "john",
                "last_name": "black",
                "dob": None,
                "salary": "1,000.00",
                "department": "D1 ",
                "date": "2000-01-01",
                "id": 2,
                "first_name": "bob",
                "last_name": "wick",
                "dob": "1900-01-01",
                "salary": "1,001.00",
                "department": "D3 ",
                "date": "2000-01-01",

    # get by "department" key and then call method "strip"
    department = c.item("department").call_method("strip")
    first_name = c.item("first_name").call_method("capitalize")
    last_name = c.item("last_name").call_method("capitalize")

    # call "format" method of a string and pass first & last names as
    # parameters
    full_name = c("{} {}").call_method("format", first_name, last_name)
    date_of_birth = c.item("dob")

    # partially initialized "strptime"
    parse_date = c.call_func(
        datetime.strptime, c.this(), "%Y-%m-%d"

    conv = (
                    "id": c.item("id"),
                    "first_name": first_name,
                    "last_name": last_name,
                    "full_name": full_name,
                    "date_of_birth": c.if_(
                    "salary": c.call_func(
                        c.item("salary").call_method("replace", ",", ""),
                    # pass a hardcoded dict and to get value by "department"
                    # key
                    "department_id": c.naive(
                            "D1": 10,
                            "D2": 11,
                            "D3": 12,
                    "date": c.item("date").pipe(parse_date),
                c.item("id"),  # key
                # write a python code expression, format with passed parameters
                ),  # value

    result = conv(input_data)
    assert result[1].kwargs == {
        "date": date(2000, 1, 1),
        "date_of_birth": None,
        "department_id": 10,
        "first_name": "John",
        "full_name": "John Black",
        "id": 1,
        "last_name": "Black",
        "salary": Decimal("1000.00"),
    assert result[2].kwargs == {
        "date": date(2000, 1, 1),
        "date_of_birth": date(1900, 1, 1),
        "department_id": 12,
        "first_name": "Bob",
        "full_name": "Bob Wick",
        "id": 2,
        "last_name": "Wick",
        "salary": Decimal("1001.00"),

Under the hood the compiled code is as follows:

def converter_2n(data_):
    global labels_
    return {
        i_0t["id"]: (Employee_vk(**i_0t))
        for i_0t in (
                "id": i_n7["id"],
                "first_name": i_n7["first_name"].capitalize(),
                "last_name": i_n7["last_name"].capitalize(),
                "full_name": "{} {}".format(
                "date_of_birth": (
                        strptime_db(i_n7["dob"], "%Y-%m-%d").date()
                        if i_n7["dob"]
                        else None
                "salary": Decimal_tr(i_n7["salary"].replace(",", "")),
                "department_id": v_g6[i_n7["department"].strip()],
                "date": strptime_db(i_n7["date"], "%Y-%m-%d").date(),
            for i_n7 in data_["objects"]

All-in-one example #2: word count

import re
from itertools import chain

from convtools import conversion as c

def test_doc__index_word_count():

    # Let's say we need to count words across all files
    input_data = [

    # # iterate an input and read file lines
    # def read_file(filename):
    #     with open(filename) as f:
    #         for line in f:
    #             yield line
    # extract_strings = c.generator_comp(c.call_func(read_file, c.this()))

    # to simplify testing
    extract_strings = c.generator_comp(
        c.call_func(lambda filename: [filename], c.this())

    # 1. make ``re`` pattern available to the code to be generated
    # 2. call ``finditer`` method of the pattern and pass the string
    #    as an argument
    # 3. pass the result to the next conversion
    # 4. iterate results, call ``.group()`` method of each re.Match
    #    and call ``.lower()`` on each result
    split_words = (
        .call_method("finditer", c.this())
                c.this().call_method("group", 0).call_method("lower")

    # ``extract_strings`` is the generator of strings
    # so we iterate it and pass each item to ``split_words`` conversion
    vectorized_split_words = c.generator_comp(c.this().pipe(split_words))

    # flattening the result of ``vectorized_split_words``, which is
    # a generator of generators of strings
    flatten = c.call_func(

    # aggregate the input, the result is a single dict
    # words are keys, values are count of words
    dict_word_to_count = c.aggregate(
        c.ReduceFuncs.DictCount(c.this(), c.this(), default=dict)

    # take top N words by:
    #  - call ``.items()`` method of the dict (the result of the aggregate)
    #  - pass the result to ``sorted``
    #  - take the slice, using input argument named ``top_n``
    #  - cast to a dict
    take_top_n = (
        .sort(key=lambda t: t[1], reverse=True)
        .pipe(c.this()[: c.input_arg("top_n")])

    # the resulting pipeline is pretty self-descriptive, except the ``c.if_``
    # part, which checks the condition (first argument),
    # and returns the 2nd if True OR the 3rd (input data by default) otherwise
    pipeline = (
        # Define the resulting converter function signature.  In fact this
        # isn't necessary if you don't need to specify default values
    ).gen_converter(debug=True, signature="data_, top_n=None")

    assert pipeline(input_data, top_n=3) == {"war": 4, "and": 4, "peace": 4}

Generated code:

def aggregate_u5(data_):
    global labels_
    _none = v_lj
    agg_data_v0_ = _none
    expected_checksum_ = 1
    checksum_ = 0
    it_ = iter(data_)
    for row_ in it_:

        if agg_data_v0_ is _none:
            agg_data_v0_ = {row_: 1}

            if agg_data_v0_ is not _none:
                checksum_ |= 1
                if checksum_ == expected_checksum_:

            if row_ not in agg_data_v0_:
                agg_data_v0_[row_] = 1
                agg_data_v0_[row_] = agg_data_v0_[row_] + 1

    for row_ in it_:

        if row_ not in agg_data_v0_:
            agg_data_v0_[row_] = 1
            agg_data_v0_[row_] = agg_data_v0_[row_] + 1

    result_ = dict() if agg_data_v0_ is _none else agg_data_v0_

    return result_

def pipe_2h(input_om, top_n):
    global labels_
    return (
            sorted(input_om.items(), key=lambda_ik, reverse=True)[
                (slice(None, top_n, None))
        if (top_n is not None)
        else input_om

def converter_wz(data_, top_n=None):
    global labels_
    return pipe_2h(
                    ( for i_ry in v_ql.finditer(i_fi))
                    for i_fi in from_iterable_c4(
                        (lambda_6b(i_jq) for i_jq in data_)

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for convtools, version 0.12.0
Filename, size File type Python version Upload date Hashes
Filename, size convtools-0.12.0.tar.gz (42.0 kB) File type Source Python version None Upload date Hashes View

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring DigiCert DigiCert EV certificate Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page