Skip to main content

Comprehensive Reconstruction Algorithm for ME-models (coralME)

Project description

https://github.com/jdtibochab/coralme/blob/main/docs/logo.png Current PyPI Version Supported Python Versions

The COmprehensive Reconstruction ALgorithm for ME-models (coralME) is an automatic pipeline for the reconstruction of ME-models. coralME integrates existing ME-modeling packages COBRAme, ECOLIme, and solveME, generalizes their functions for implementation on any prokaryote, and processes readily available organism-specific inputs for the automatic generation of a working ME-model.

coralME has four main objectives:

  1. Synchronize input files to remove contradictory entries.

  2. Complement input files from homology with a template organism to complete the E-matrix.

  3. Reconstruct a ME-model.

  4. Troubleshoot the ME-model to make it functional.

Getting started

With an existing M-model file (JSON or XML) and a corresponding genome GenBank file, run (only v1.2.0+)

coralme --m-model-path PATH_TO_M_MODEL --genbank-path PATH_TO_GENBANK_FILE

To get help:

coralme --help

For more usage information, go to Tutorials.

Installation

Install using pip

  1. pip install coralme

Install locally

  1. Clone repository and navigate to coralme/.

  2. pip install -r requirements.txt

  3. python3 setup.py clean build install

Install using docker (tested on Ubuntu 22.04)

  1. Clone repository and navigate to coralme/

  2. docker build --file "./Dockerfile-Python3.10" . -t "python3.10-coralme"

  3. docker run --detach -p 10000:8888 -v USER/PATH/TO/coralme/:/opt/notebooks/ python3.10-coralme

  4. In your browser, go to localhost:10000

Install using docker (to run MINOS and quad MINOS for Apple Silicon)

  1. Install OrbStack (Docker Desktop alternative - recommended because it automatically uses Rosetta for AMD images).

  2. Clone repository and navigate to coralme/.

  3. docker buildx create --name multiarch --use

  4. docker buildx build --platform linux/amd64 --file "./Dockerfile-Python3.10" . -t "python3.10-coralme:amd64" --load

  5. docker run --detach -p 10000:8888 -v USER/PATH/TO/coralme/:/opt/notebooks/ python3.10-coralme:amd64

  6. In your browser, go to localhost:10000

Requirements

  • Python3, version 3.8, 3.9, 3.10, 3.11, 3.12, or 3.13

  • COBRApy

  • GUROBIpy (license is required)

  • Ubuntu 22.04 is recommended (libgfortran.so.5 is required to execute MINOS and quad MINOS)

  • Windows and MacOS users need to install Gurobi or IBM CPLEX Optimizer. Alternatively, Windows users can install WSL and Ubuntu. Windows and MacOS users can use as well Docker Desktop to install it. We recommend the installation of Jupyter in the guest and its access through a browser from the host.

Compiled MINOS and quad MINOS are provided here as *.so files under coralme/solver, and have been compiled using:

  • Python3, versions 3.7.17, 3.8.20, 3.9.21, and 3.10.16

  • wheel 0.38.4

  • cython 0.29.32

  • numpy 1.21.6

Compiled MINOS and quad MINOS are provided here as *.so files under coralme/solver, and have been compiled using:

  • Python3, versions 3.11.11, 3.12.9, and 3.13.2

  • wheel 0.43.0

  • cython 3.0.10

  • numpy 2.0.0

  • meson 1.8.0

  • ninja 1.11.1.4

Documentation

You can find the documentation as a combined PDF called coralME_Documentation.pdf

Development

The coralME package has been tested using the following package versions:

Package

Python 3.8

Python 3.9

Python 3.10

Python 3.11

Python 3.12

Python 3.13

cobra

0.29.0

0.29.0

0.29.0

0.29.0

0.29.0

0.29.0

numpy

1.24.4

1.26.4

1.26.4

2.2.5

2.2.5

2.2.5

scipy

1.10.1

1.13.1

1.14.0

1.14.0

1.14.0

1.14.1

pandas

2.0.3

2.2.3

2.2.3

2.2.3

2.2.3

2.2.3

sympy

1.12.1

1.12.1

1.12.1

1.12.1

1.12.1

1.12.1

pint

0.21.1

0.24.4

0.24.4

0.24.4

0.24.4

0.24.4

anyconfig

0.14.0

0.14.0

0.14.0

0.14.0

0.14.0

0.14.0

gurobipy

11.0.0

11.0.0

11.0.0

11.0.0

11.0.0

12.0.0

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

coralme-1.2.2.tar.gz (18.5 MB view details)

Uploaded Source

Built Distribution

coralme-1.2.2-py3-none-any.whl (19.1 MB view details)

Uploaded Python 3

File details

Details for the file coralme-1.2.2.tar.gz.

File metadata

  • Download URL: coralme-1.2.2.tar.gz
  • Upload date:
  • Size: 18.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.10.12

File hashes

Hashes for coralme-1.2.2.tar.gz
Algorithm Hash digest
SHA256 f63d7f3757e7d53453a7aa4cd008b1d15a07ed3e12b733e72e1b5d3e51d97724
MD5 2ba5385ca38e6e4b096b1b8fcd26b062
BLAKE2b-256 cffdeee6d62fadd9c3ce0962025084c5f2cfdf6ffbc679fb0d2919acea57e3e6

See more details on using hashes here.

File details

Details for the file coralme-1.2.2-py3-none-any.whl.

File metadata

  • Download URL: coralme-1.2.2-py3-none-any.whl
  • Upload date:
  • Size: 19.1 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.10.12

File hashes

Hashes for coralme-1.2.2-py3-none-any.whl
Algorithm Hash digest
SHA256 72bb36c982edb042208f8fe2d16f3a8bab3edcdf9782ca2de6781e1756384ed2
MD5 f0d6a946a1f5975587f22f24034488c8
BLAKE2b-256 128396acbe820dc00f99eb3e708b5a4b80736f2b5e80d9838f18280f911c512d

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page