Skip to main content

Fast contraction ordering primitives for tensor networks.

Project description

cotengrust

cotengrust provides fast rust implementations of contraction ordering primitives for tensor networks or einsum expressions. The two main functions are:

  • optimize_optimal(inputs, output, size_dict, **kwargs)
  • optimize_greedy(inputs, output, size_dict, **kwargs)

The optimal algorithm is an optimized version of the opt_einsum 'dp' path - itself an implementation of https://arxiv.org/abs/1304.6112.

There is also a variant of the greedy algorithm, which runs ntrials of greedy, randomized paths and computes and reports the flops cost (log10) simultaneously:

  • optimize_random_greedy_track_flops(inputs, output, size_dict, **kwargs)

Installation

cotengrust is available for most platforms from PyPI:

pip install cotengrust

or if you want to develop locally (which requires pyo3 and maturin):

git clone https://github.com/jcmgray/cotengrust.git
cd cotengrust
maturin develop --release

(the release flag is very important for assessing performance!).

Usage

If cotengrust is installed, then by default cotengra will use it for its greedy, random-greedy, and optimal subroutines, notably subtree reconfiguration. You can also call the routines directly:

import cotengra as ctg
import cotengrust as ctgr

# specify an 8x8 square lattice contraction
inputs, output, shapes, size_dict = ctg.utils.lattice_equation([8, 8])

# find the optimal 'combo' contraction path
%%time
path = ctgr.optimize_optimal(inputs, output, size_dict, minimize='combo')
# CPU times: user 13.7 s, sys: 83.4 ms, total: 13.7 s
# Wall time: 13.7 s

# construct a contraction tree for further introspection
tree = ctg.ContractionTree.from_path(
    inputs, output, size_dict, path=path
)
tree.plot_rubberband()

optimal-8x8-order

Benchmarks

The following benchmarks illustrate performance and may be a useful comparison point for other implementations.


First, the runtime of the optimal algorithm on random 3-regular graphs, with all bond sizes set to 2, for different mimimize targets:

Taken over 20 instances, lines show mean and bands show standard error on mean. Note how much easier it is to find optimal paths for the maximum intermediate size or cost only (vs. total for all contractions). While the runtime generally scales exponentially, for some specific geometries it might reduce to polynomial.


For very large graphs, the random_greedy optimizer is appropriate, and there is a tradeoff between how long one lets it run (ntrials) and the best cost it achieves. Here we plot these for various $N=L\times L$ square grid graphs, with all bond sizes set to 2, for different ntrials (labelled on each marker):

Again, data is taken over 20 runs, with lines and bands showing mean and standard error on the mean. In most cases 32-64 trials is sufficient to achieve close to convergence, but for larger or harder graphs you may need more. The empirical scaling of the random-greedy algorithm is very roughly $\mathcal{O}(N^{1.5})$ here.


The depth 20 sycamore quantum circuit amplitude is a standard benchmark nowadays, it is generally a harder graph than the 2d lattice. Still, the random-greedy approach can do quite well due to its sampling of both temperature and costmod:

Again, each point is a ntrials setting, and the lines and bands show the mean and error on the mean respectively, across 20 repeats. The dashed line shows the roughly best known line from other more advanced methods.


API

The optimize functions follow the api of the python implementations in cotengra.pathfinders.path_basic.py.

def optimize_optimal(
    inputs,
    output,
    size_dict,
    minimize='flops',
    cost_cap=2,
    search_outer=False,
    simplify=True,
    use_ssa=False,
):
    """Find an optimal contraction ordering.

    Parameters
    ----------
    inputs : Sequence[Sequence[str]]
        The indices of each input tensor.
    output : Sequence[str]
        The indices of the output tensor.
    size_dict : dict[str, int]
        The size of each index.
    minimize : str, optional
        The cost function to minimize. The options are:

        - "flops": minimize with respect to total operation count only
          (also known as contraction cost)
        - "size": minimize with respect to maximum intermediate size only
          (also known as contraction width)
        - 'max': minimize the single most expensive contraction, i.e. the
          asymptotic (in index size) scaling of the contraction
        - 'write' : minimize the sum of all tensor sizes, i.e. memory written
        - 'combo' or 'combo={factor}` : minimize the sum of
          FLOPS + factor * WRITE, with a default factor of 64.
        - 'limit' or 'limit={factor}` : minimize the sum of
          MAX(FLOPS, alpha * WRITE) for each individual contraction, with a
          default factor of 64.

        'combo' is generally a good default in term of practical hardware
        performance, where both memory bandwidth and compute are limited.
    cost_cap : float, optional
        The maximum cost of a contraction to initially consider. This acts like
        a sieve and is doubled at each iteration until the optimal path can
        be found, but supplying an accurate guess can speed up the algorithm.
    search_outer : bool, optional
        If True, consider outer product contractions. This is much slower but
        theoretically might be required to find the true optimal 'flops'
        ordering. In practical settings (i.e. with minimize='combo'), outer
        products should not be required.
    simplify : bool, optional
        Whether to perform simplifications before optimizing. These are:

        - ignore any indices that appear in all terms
        - combine any repeated indices within a single term
        - reduce any non-output indices that only appear on a single term
        - combine any scalar terms
        - combine any tensors with matching indices (hadamard products)

        Such simpifications may be required in the general case for the proper
        functioning of the core optimization, but may be skipped if the input
        indices are already in a simplified form.
    use_ssa : bool, optional
        Whether to return the contraction path in 'single static assignment'
        (SSA) format (i.e. as if each intermediate is appended to the list of
        inputs, without removals). This can be quicker and easier to work with
        than the 'linear recycled' format that `numpy` and `opt_einsum` use.

    Returns
    -------
    path : list[list[int]]
        The contraction path, given as a sequence of pairs of node indices. It
        may also have single term contractions if `simplify=True`.
    """
    ...


def optimize_greedy(
    inputs,
    output,
    size_dict,
    costmod=1.0,
    temperature=0.0,
    simplify=True,
    use_ssa=False,
):
    """Find a contraction path using a (randomizable) greedy algorithm.

    Parameters
    ----------
    inputs : Sequence[Sequence[str]]
        The indices of each input tensor.
    output : Sequence[str]
        The indices of the output tensor.
    size_dict : dict[str, int]
        A dictionary mapping indices to their dimension.
    costmod : float, optional
        When assessing local greedy scores how much to weight the size of the
        tensors removed compared to the size of the tensor added::

            score = size_ab / costmod - (size_a + size_b) * costmod

        This can be a useful hyper-parameter to tune.
    temperature : float, optional
        When asessing local greedy scores, how much to randomly perturb the
        score. This is implemented as::

            score -> sign(score) * log(|score|) - temperature * gumbel()

        which implements boltzmann sampling.
    simplify : bool, optional
        Whether to perform simplifications before optimizing. These are:

        - ignore any indices that appear in all terms
        - combine any repeated indices within a single term
        - reduce any non-output indices that only appear on a single term
        - combine any scalar terms
        - combine any tensors with matching indices (hadamard products)

        Such simpifications may be required in the general case for the proper
        functioning of the core optimization, but may be skipped if the input
        indices are already in a simplified form.
    use_ssa : bool, optional
        Whether to return the contraction path in 'single static assignment'
        (SSA) format (i.e. as if each intermediate is appended to the list of
        inputs, without removals). This can be quicker and easier to work with
        than the 'linear recycled' format that `numpy` and `opt_einsum` use.

    Returns
    -------
    path : list[list[int]]
        The contraction path, given as a sequence of pairs of node indices. It
        may also have single term contractions if `simplify=True`.
    """

def optimize_simplify(
    inputs,
    output,
    size_dict,
    use_ssa=False,
):
    """Find the (partial) contracton path for simplifiactions only.

    Parameters
    ----------
    inputs : Sequence[Sequence[str]]
        The indices of each input tensor.
    output : Sequence[str]
        The indices of the output tensor.
    size_dict : dict[str, int]
        A dictionary mapping indices to their dimension.
    use_ssa : bool, optional
        Whether to return the contraction path in 'single static assignment'
        (SSA) format (i.e. as if each intermediate is appended to the list of
        inputs, without removals). This can be quicker and easier to work with
        than the 'linear recycled' format that `numpy` and `opt_einsum` use.

    Returns
    -------
    path : list[list[int]]
        The contraction path, given as a sequence of pairs of node indices. It
        may also have single term contractions.
    """
    ...

def optimize_random_greedy_track_flops(
    inputs,
    output,
    size_dict,
    ntrials=1,
    costmod=(0.1, 4.0),
    temperature=(0.001, 1.0),
    seed=None,
    simplify=True,
    use_ssa=False,
):
    """Perform a batch of random greedy optimizations, simulteneously tracking
    the best contraction path in terms of flops, so as to avoid constructing a
    separate contraction tree.

    Parameters
    ----------
    inputs : tuple[tuple[str]]
        The indices of each input tensor.
    output : tuple[str]
        The indices of the output tensor.
    size_dict : dict[str, int]
        A dictionary mapping indices to their dimension.
    ntrials : int, optional
        The number of random greedy trials to perform. The default is 1.
    costmod : (float, float), optional
        When assessing local greedy scores how much to weight the size of the
        tensors removed compared to the size of the tensor added::

            score = size_ab / costmod - (size_a + size_b) * costmod

        It is sampled uniformly from the given range.
    temperature : (float, float), optional
        When asessing local greedy scores, how much to randomly perturb the
        score. This is implemented as::

            score -> sign(score) * log(|score|) - temperature * gumbel()

        which implements boltzmann sampling. It is sampled log-uniformly from
        the given range.
    seed : int, optional
        The seed for the random number generator.
    simplify : bool, optional
        Whether to perform simplifications before optimizing. These are:

        - ignore any indices that appear in all terms
        - combine any repeated indices within a single term
        - reduce any non-output indices that only appear on a single term
        - combine any scalar terms
        - combine any tensors with matching indices (hadamard products)

        Such simpifications may be required in the general case for the proper
        functioning of the core optimization, but may be skipped if the input
        indices are already in a simplified form.
    use_ssa : bool, optional
        Whether to return the contraction path in 'single static assignment'
        (SSA) format (i.e. as if each intermediate is appended to the list of
        inputs, without removals). This can be quicker and easier to work with
        than the 'linear recycled' format that `numpy` and `opt_einsum` use.

    Returns
    -------
    path : list[list[int]]
        The best contraction path, given as a sequence of pairs of node
        indices.
    flops : float
        The flops (/ contraction cost / number of multiplications), of the best
        contraction path, given log10.
    """
    ...

def ssa_to_linear(ssa_path, n=None):
    """Convert a SSA path to linear format."""
    ...

def find_subgraphs(inputs, output, size_dict,):
    """Find all disconnected subgraphs of a specified contraction."""
    ...

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cotengrust-0.2.0.tar.gz (38.8 kB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

cotengrust-0.2.0-pp311-pypy311_pp73-musllinux_1_2_x86_64.whl (595.5 kB view details)

Uploaded PyPymusllinux: musl 1.2+ x86-64

cotengrust-0.2.0-pp311-pypy311_pp73-musllinux_1_2_i686.whl (620.0 kB view details)

Uploaded PyPymusllinux: musl 1.2+ i686

cotengrust-0.2.0-pp311-pypy311_pp73-musllinux_1_2_armv7l.whl (689.5 kB view details)

Uploaded PyPymusllinux: musl 1.2+ ARMv7l

cotengrust-0.2.0-pp311-pypy311_pp73-musllinux_1_2_aarch64.whl (565.0 kB view details)

Uploaded PyPymusllinux: musl 1.2+ ARM64

cotengrust-0.2.0-pp311-pypy311_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (424.2 kB view details)

Uploaded PyPymanylinux: glibc 2.17+ x86-64

cotengrust-0.2.0-pp311-pypy311_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl (507.1 kB view details)

Uploaded PyPymanylinux: glibc 2.17+ s390x

cotengrust-0.2.0-pp311-pypy311_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (449.4 kB view details)

Uploaded PyPymanylinux: glibc 2.17+ ppc64le

cotengrust-0.2.0-pp311-pypy311_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (426.1 kB view details)

Uploaded PyPymanylinux: glibc 2.17+ ARMv7l

cotengrust-0.2.0-pp311-pypy311_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (383.6 kB view details)

Uploaded PyPymanylinux: glibc 2.17+ ARM64

cotengrust-0.2.0-pp311-pypy311_pp73-manylinux_2_5_i686.manylinux1_i686.whl (445.4 kB view details)

Uploaded PyPymanylinux: glibc 2.5+ i686

cotengrust-0.2.0-pp310-pypy310_pp73-musllinux_1_2_x86_64.whl (595.8 kB view details)

Uploaded PyPymusllinux: musl 1.2+ x86-64

cotengrust-0.2.0-pp310-pypy310_pp73-musllinux_1_2_i686.whl (620.1 kB view details)

Uploaded PyPymusllinux: musl 1.2+ i686

cotengrust-0.2.0-pp310-pypy310_pp73-musllinux_1_2_armv7l.whl (689.7 kB view details)

Uploaded PyPymusllinux: musl 1.2+ ARMv7l

cotengrust-0.2.0-pp310-pypy310_pp73-musllinux_1_2_aarch64.whl (565.2 kB view details)

Uploaded PyPymusllinux: musl 1.2+ ARM64

cotengrust-0.2.0-pp310-pypy310_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl (507.9 kB view details)

Uploaded PyPymanylinux: glibc 2.17+ s390x

cotengrust-0.2.0-pp310-pypy310_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (449.6 kB view details)

Uploaded PyPymanylinux: glibc 2.17+ ppc64le

cotengrust-0.2.0-pp310-pypy310_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (426.3 kB view details)

Uploaded PyPymanylinux: glibc 2.17+ ARMv7l

cotengrust-0.2.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (383.9 kB view details)

Uploaded PyPymanylinux: glibc 2.17+ ARM64

cotengrust-0.2.0-pp39-pypy39_pp73-musllinux_1_2_x86_64.whl (596.1 kB view details)

Uploaded PyPymusllinux: musl 1.2+ x86-64

cotengrust-0.2.0-pp39-pypy39_pp73-musllinux_1_2_i686.whl (620.1 kB view details)

Uploaded PyPymusllinux: musl 1.2+ i686

cotengrust-0.2.0-pp39-pypy39_pp73-musllinux_1_2_armv7l.whl (689.7 kB view details)

Uploaded PyPymusllinux: musl 1.2+ ARMv7l

cotengrust-0.2.0-pp39-pypy39_pp73-musllinux_1_2_aarch64.whl (565.4 kB view details)

Uploaded PyPymusllinux: musl 1.2+ ARM64

cotengrust-0.2.0-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl (508.2 kB view details)

Uploaded PyPymanylinux: glibc 2.17+ s390x

cotengrust-0.2.0-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (449.8 kB view details)

Uploaded PyPymanylinux: glibc 2.17+ ppc64le

cotengrust-0.2.0-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (426.3 kB view details)

Uploaded PyPymanylinux: glibc 2.17+ ARMv7l

cotengrust-0.2.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (384.1 kB view details)

Uploaded PyPymanylinux: glibc 2.17+ ARM64

cotengrust-0.2.0-cp314-cp314-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (419.3 kB view details)

Uploaded CPython 3.14manylinux: glibc 2.17+ x86-64

cotengrust-0.2.0-cp314-cp314-manylinux_2_5_i686.manylinux1_i686.whl (440.7 kB view details)

Uploaded CPython 3.14manylinux: glibc 2.5+ i686

cotengrust-0.2.0-cp313-cp313t-musllinux_1_2_x86_64.whl (590.1 kB view details)

Uploaded CPython 3.13tmusllinux: musl 1.2+ x86-64

cotengrust-0.2.0-cp313-cp313t-musllinux_1_2_i686.whl (613.5 kB view details)

Uploaded CPython 3.13tmusllinux: musl 1.2+ i686

cotengrust-0.2.0-cp313-cp313t-musllinux_1_2_armv7l.whl (683.4 kB view details)

Uploaded CPython 3.13tmusllinux: musl 1.2+ ARMv7l

cotengrust-0.2.0-cp313-cp313t-musllinux_1_2_aarch64.whl (560.0 kB view details)

Uploaded CPython 3.13tmusllinux: musl 1.2+ ARM64

cotengrust-0.2.0-cp313-cp313t-manylinux_2_17_s390x.manylinux2014_s390x.whl (501.9 kB view details)

Uploaded CPython 3.13tmanylinux: glibc 2.17+ s390x

cotengrust-0.2.0-cp313-cp313t-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (444.4 kB view details)

Uploaded CPython 3.13tmanylinux: glibc 2.17+ ppc64le

cotengrust-0.2.0-cp313-cp313t-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (419.8 kB view details)

Uploaded CPython 3.13tmanylinux: glibc 2.17+ ARMv7l

cotengrust-0.2.0-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (378.3 kB view details)

Uploaded CPython 3.13tmanylinux: glibc 2.17+ ARM64

cotengrust-0.2.0-cp313-cp313-win_amd64.whl (291.9 kB view details)

Uploaded CPython 3.13Windows x86-64

cotengrust-0.2.0-cp313-cp313-win32.whl (279.2 kB view details)

Uploaded CPython 3.13Windows x86

cotengrust-0.2.0-cp313-cp313-musllinux_1_2_x86_64.whl (590.8 kB view details)

Uploaded CPython 3.13musllinux: musl 1.2+ x86-64

cotengrust-0.2.0-cp313-cp313-musllinux_1_2_i686.whl (614.5 kB view details)

Uploaded CPython 3.13musllinux: musl 1.2+ i686

cotengrust-0.2.0-cp313-cp313-musllinux_1_2_armv7l.whl (684.6 kB view details)

Uploaded CPython 3.13musllinux: musl 1.2+ ARMv7l

cotengrust-0.2.0-cp313-cp313-musllinux_1_2_aarch64.whl (560.7 kB view details)

Uploaded CPython 3.13musllinux: musl 1.2+ ARM64

cotengrust-0.2.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (419.5 kB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ x86-64

cotengrust-0.2.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl (502.6 kB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ s390x

cotengrust-0.2.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (445.0 kB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ ppc64le

cotengrust-0.2.0-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (420.8 kB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ ARMv7l

cotengrust-0.2.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (379.2 kB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ ARM64

cotengrust-0.2.0-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl (440.8 kB view details)

Uploaded CPython 3.13manylinux: glibc 2.5+ i686

cotengrust-0.2.0-cp313-cp313-macosx_11_0_arm64.whl (352.7 kB view details)

Uploaded CPython 3.13macOS 11.0+ ARM64

cotengrust-0.2.0-cp313-cp313-macosx_10_12_x86_64.whl (399.9 kB view details)

Uploaded CPython 3.13macOS 10.12+ x86-64

cotengrust-0.2.0-cp312-cp312-win_amd64.whl (292.3 kB view details)

Uploaded CPython 3.12Windows x86-64

cotengrust-0.2.0-cp312-cp312-musllinux_1_2_x86_64.whl (591.1 kB view details)

Uploaded CPython 3.12musllinux: musl 1.2+ x86-64

cotengrust-0.2.0-cp312-cp312-musllinux_1_2_i686.whl (614.9 kB view details)

Uploaded CPython 3.12musllinux: musl 1.2+ i686

cotengrust-0.2.0-cp312-cp312-musllinux_1_2_armv7l.whl (685.0 kB view details)

Uploaded CPython 3.12musllinux: musl 1.2+ ARMv7l

cotengrust-0.2.0-cp312-cp312-musllinux_1_2_aarch64.whl (560.9 kB view details)

Uploaded CPython 3.12musllinux: musl 1.2+ ARM64

cotengrust-0.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (419.8 kB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64

cotengrust-0.2.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl (503.0 kB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ s390x

cotengrust-0.2.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (445.3 kB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ ppc64le

cotengrust-0.2.0-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (421.3 kB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ ARMv7l

cotengrust-0.2.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (379.5 kB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ ARM64

cotengrust-0.2.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl (441.1 kB view details)

Uploaded CPython 3.12manylinux: glibc 2.5+ i686

cotengrust-0.2.0-cp312-cp312-macosx_11_0_arm64.whl (352.9 kB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

cotengrust-0.2.0-cp312-cp312-macosx_10_12_x86_64.whl (400.0 kB view details)

Uploaded CPython 3.12macOS 10.12+ x86-64

cotengrust-0.2.0-cp311-cp311-win_amd64.whl (292.8 kB view details)

Uploaded CPython 3.11Windows x86-64

cotengrust-0.2.0-cp311-cp311-musllinux_1_2_x86_64.whl (593.3 kB view details)

Uploaded CPython 3.11musllinux: musl 1.2+ x86-64

cotengrust-0.2.0-cp311-cp311-musllinux_1_2_i686.whl (617.3 kB view details)

Uploaded CPython 3.11musllinux: musl 1.2+ i686

cotengrust-0.2.0-cp311-cp311-musllinux_1_2_armv7l.whl (687.4 kB view details)

Uploaded CPython 3.11musllinux: musl 1.2+ ARMv7l

cotengrust-0.2.0-cp311-cp311-musllinux_1_2_aarch64.whl (562.6 kB view details)

Uploaded CPython 3.11musllinux: musl 1.2+ ARM64

cotengrust-0.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (422.0 kB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

cotengrust-0.2.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl (505.0 kB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ s390x

cotengrust-0.2.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (447.7 kB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ ppc64le

cotengrust-0.2.0-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (423.9 kB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ ARMv7l

cotengrust-0.2.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (381.5 kB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ ARM64

cotengrust-0.2.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl (443.2 kB view details)

Uploaded CPython 3.11manylinux: glibc 2.5+ i686

cotengrust-0.2.0-cp311-cp311-macosx_11_0_arm64.whl (355.8 kB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

cotengrust-0.2.0-cp311-cp311-macosx_10_12_x86_64.whl (402.6 kB view details)

Uploaded CPython 3.11macOS 10.12+ x86-64

cotengrust-0.2.0-cp310-cp310-win_amd64.whl (293.0 kB view details)

Uploaded CPython 3.10Windows x86-64

cotengrust-0.2.0-cp310-cp310-musllinux_1_2_x86_64.whl (593.4 kB view details)

Uploaded CPython 3.10musllinux: musl 1.2+ x86-64

cotengrust-0.2.0-cp310-cp310-musllinux_1_2_i686.whl (617.4 kB view details)

Uploaded CPython 3.10musllinux: musl 1.2+ i686

cotengrust-0.2.0-cp310-cp310-musllinux_1_2_armv7l.whl (687.8 kB view details)

Uploaded CPython 3.10musllinux: musl 1.2+ ARMv7l

cotengrust-0.2.0-cp310-cp310-musllinux_1_2_aarch64.whl (562.8 kB view details)

Uploaded CPython 3.10musllinux: musl 1.2+ ARM64

cotengrust-0.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (422.2 kB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

cotengrust-0.2.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl (505.8 kB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ s390x

cotengrust-0.2.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (447.8 kB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ ppc64le

cotengrust-0.2.0-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (424.2 kB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ ARMv7l

cotengrust-0.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (381.7 kB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ ARM64

cotengrust-0.2.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl (443.4 kB view details)

Uploaded CPython 3.10manylinux: glibc 2.5+ i686

cotengrust-0.2.0-cp39-cp39-win_amd64.whl (293.0 kB view details)

Uploaded CPython 3.9Windows x86-64

cotengrust-0.2.0-cp39-cp39-musllinux_1_2_x86_64.whl (593.7 kB view details)

Uploaded CPython 3.9musllinux: musl 1.2+ x86-64

cotengrust-0.2.0-cp39-cp39-musllinux_1_2_i686.whl (617.4 kB view details)

Uploaded CPython 3.9musllinux: musl 1.2+ i686

cotengrust-0.2.0-cp39-cp39-musllinux_1_2_armv7l.whl (687.8 kB view details)

Uploaded CPython 3.9musllinux: musl 1.2+ ARMv7l

cotengrust-0.2.0-cp39-cp39-musllinux_1_2_aarch64.whl (562.9 kB view details)

Uploaded CPython 3.9musllinux: musl 1.2+ ARM64

cotengrust-0.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (422.4 kB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

cotengrust-0.2.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl (506.1 kB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ s390x

cotengrust-0.2.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (448.0 kB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ ppc64le

cotengrust-0.2.0-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (424.2 kB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ ARMv7l

cotengrust-0.2.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (382.0 kB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ ARM64

cotengrust-0.2.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl (443.4 kB view details)

Uploaded CPython 3.9manylinux: glibc 2.5+ i686

cotengrust-0.2.0-cp38-cp38-musllinux_1_2_x86_64.whl (593.6 kB view details)

Uploaded CPython 3.8musllinux: musl 1.2+ x86-64

cotengrust-0.2.0-cp38-cp38-musllinux_1_2_i686.whl (617.2 kB view details)

Uploaded CPython 3.8musllinux: musl 1.2+ i686

cotengrust-0.2.0-cp38-cp38-musllinux_1_2_armv7l.whl (687.5 kB view details)

Uploaded CPython 3.8musllinux: musl 1.2+ ARMv7l

cotengrust-0.2.0-cp38-cp38-musllinux_1_2_aarch64.whl (562.8 kB view details)

Uploaded CPython 3.8musllinux: musl 1.2+ ARM64

cotengrust-0.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (422.2 kB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

cotengrust-0.2.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl (505.9 kB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ s390x

cotengrust-0.2.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (447.9 kB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ ppc64le

cotengrust-0.2.0-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (424.0 kB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ ARMv7l

cotengrust-0.2.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (381.8 kB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ ARM64

cotengrust-0.2.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl (443.1 kB view details)

Uploaded CPython 3.8manylinux: glibc 2.5+ i686

File details

Details for the file cotengrust-0.2.0.tar.gz.

File metadata

  • Download URL: cotengrust-0.2.0.tar.gz
  • Upload date:
  • Size: 38.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.9.4

File hashes

Hashes for cotengrust-0.2.0.tar.gz
Algorithm Hash digest
SHA256 a65844fabc9f7b9e25905460ddafa6771f062fb876c246ef33fa0b22aa420943
MD5 899948c1d8540bd77296f8169c09191c
BLAKE2b-256 8b78c6fe8934450bf718fb3912c8fb798bf902fecb8f8ed30e22d02615072bdf

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-pp311-pypy311_pp73-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for cotengrust-0.2.0-pp311-pypy311_pp73-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 60b1b5dcd32f4dc9f0d57041420278de70e28561e70c674ef0fb28aeeaada1c5
MD5 d107dd366479e1d882cf52fafe0a2120
BLAKE2b-256 2689308cde788e7d79b365e2cc4318e0c01c5202071e960e819c354e6212cacb

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-pp311-pypy311_pp73-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for cotengrust-0.2.0-pp311-pypy311_pp73-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 e22f69bb0472c254c00bfd6c3616772daf63f9ce6b6f044e71842c140676ca1d
MD5 3e66caf56b58b70b51a324d14b7eddc9
BLAKE2b-256 6233dc9f29cd50e6f7840d34e664a631716e158f2320647aea41c712a7f2146e

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-pp311-pypy311_pp73-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for cotengrust-0.2.0-pp311-pypy311_pp73-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 1e09421830f7e18bc777424e29bf9bbe88a138efd6d84850713ebde031ba8144
MD5 8f9b475da3d1116bda6505147acc8c9a
BLAKE2b-256 9cc7c110df6e1f912fcee5bddf17dcdebec602dbe4cbf94a403372598e83c40f

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-pp311-pypy311_pp73-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for cotengrust-0.2.0-pp311-pypy311_pp73-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 33331f0ef647640ecd7ecb21b81ac8eae9a710f4b58448e4ca70b42effe9bef8
MD5 7bac3aafc556fe8af8e3bfd9d13c1884
BLAKE2b-256 2e90602f55fe26bafb78fd805ed7c91cd4593c2da6260e9a52809dcd3d8fea1c

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-pp311-pypy311_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for cotengrust-0.2.0-pp311-pypy311_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b3a847ebb9f9b676b89b3c6e13bbc4a2dee97a669ace71eda9329fe67332d37d
MD5 464463e34a74a4e6c23fcb13d12e1e91
BLAKE2b-256 c9491897ff74be8c9cb04237338c9bbb60635cfb2f0e66e53e5266bb008525ad

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-pp311-pypy311_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for cotengrust-0.2.0-pp311-pypy311_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 3c4372b639d1c15ca9d21378a992f8de803b0fe18c14a7e1bb4a611d616e7077
MD5 aa2934e1cc29bd3df481f47951bed0f0
BLAKE2b-256 5b9831892ac00688d88b8582d6409e6bd4413d9b2e349504464d904a4eb3252b

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-pp311-pypy311_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for cotengrust-0.2.0-pp311-pypy311_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 f897c7cfe8c065674224d8529e576a4f7601fad73774f86ab44b81c9ea2d3cba
MD5 d7d2aa92cfcc77f973a4c12fa5a1d47c
BLAKE2b-256 0769d1ed3e0105eb9fb3d4815606cfbbf6c97e031c7474b9db917e798c23e192

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-pp311-pypy311_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for cotengrust-0.2.0-pp311-pypy311_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 088469f0c6f5ae2b5c53a15209d9917fadee48e4b2abd252b3b967a264aefb3a
MD5 c3e77b2efa91cf586143535588ec2b68
BLAKE2b-256 364d9b533e0fbc4f9e021d69f155d25877cbd3781789fd7620911939ddd37695

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-pp311-pypy311_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for cotengrust-0.2.0-pp311-pypy311_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 59388eff3dec8cd383a749e4232110b0ff89c874c6a09d2331e94a666ff9a698
MD5 d6626992538dadbf98d7baf68a94360f
BLAKE2b-256 4971b6a95d73b58e9fcb78faad85950e8c040b323082324c05cbf4cd77b3c419

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-pp311-pypy311_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for cotengrust-0.2.0-pp311-pypy311_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 3f2d07a6e0fea8764eaa6406bbbb988853893acfc940848f784d20a3cd0f5340
MD5 ea693635a6b963be2a83b561a09f3ad4
BLAKE2b-256 f619d0e24a2095f6b3c51016caebda1bbb7b2398721d7d746b43aa2c3a5324d8

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-pp310-pypy310_pp73-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for cotengrust-0.2.0-pp310-pypy310_pp73-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 aa2d18e4d73681a16ac6d75efeb69a9aacfef561f7df62ae4718e708513b1045
MD5 1c98e1b8cbc419f09f3c6797a686f41a
BLAKE2b-256 a56a530cb977e46ee19b7d295a8f9a6209fae79daafc05bcbe9e32e6affcf1de

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-pp310-pypy310_pp73-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for cotengrust-0.2.0-pp310-pypy310_pp73-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 3418291b06eb601ab14a3b01d20b2ccf548bb566748b5eb617ee6bf43715f493
MD5 6023512a6947eeb4439f8e394809f396
BLAKE2b-256 3911fbb449feb582ca7056f50e1f069bf77ee5eb86095495b49715ddb8603506

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-pp310-pypy310_pp73-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for cotengrust-0.2.0-pp310-pypy310_pp73-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 f62852742225eccc260fa921299158452e0029dacc711ebcebcbd76b3b8d6fdd
MD5 fa7aaf6a514be201b7c95ac8e7d39ba6
BLAKE2b-256 ce23f8ebd18045ef2536fbb2f1112a917c6a454bf57bfb1ab0fdf565ca59e006

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-pp310-pypy310_pp73-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for cotengrust-0.2.0-pp310-pypy310_pp73-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 22a4d600a3b9f158771c6ba49887b653390b91d29eff6121373ad9090f7bac3d
MD5 fc2ac9abcff63c800195eab0d4f6d3cd
BLAKE2b-256 05b13ea158283790569ffc087c741993d3be1efbf92e598f10d84be044f3f05a

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-pp310-pypy310_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for cotengrust-0.2.0-pp310-pypy310_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 19e71f498ae1416cf52d0e58c5cacfbca0e9bc1431ac4cc6e49267c4751198b6
MD5 0ede3691dfe3d3d934adc48162da385e
BLAKE2b-256 586b7a6f71e6cb0ec6e766342852acde6d2a84304c0bb59aa223103ac4b50001

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-pp310-pypy310_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for cotengrust-0.2.0-pp310-pypy310_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 383450b81f20bfff6d35413162b023d645c7b37d0d9ab8aea1e7a1e4d8476053
MD5 4b589feebb2cf27078e9a91e80559741
BLAKE2b-256 293e7be2b00bf82773aec6152ac2b8f64f165ba109c8cd5aadecf211e6b11232

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-pp310-pypy310_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for cotengrust-0.2.0-pp310-pypy310_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 1766bc12ebf4da8a27cd9d1bfcec2c1c015df07a909b6998c385416c59b47999
MD5 e2cd4c40310cef05a5b128de7ff74ccd
BLAKE2b-256 af17fb9223a7b0a0fad9fa14bac8acf312356da4f5edb64ffb017dfed6778b0d

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for cotengrust-0.2.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e02cc7ad57862936f1d112e7d900749a46e524e31dd0f5e24c5d20cc85252a3f
MD5 9c011760e987e856ae75c71d025dd4ed
BLAKE2b-256 2277bce046d1b52b00fde62868dde1e016bf7f0d3e8987828b4fdc954d4c17aa

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-pp39-pypy39_pp73-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for cotengrust-0.2.0-pp39-pypy39_pp73-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 de226800e6b1be17485b7b9bf328c5d90ec3947a5a5f68da444f2b947de46a77
MD5 56654c1cddf0c2a5d1cb059cabff33c7
BLAKE2b-256 173755eff33341024005eae71d8a84d16872618b5ad5a31717bdbae1d6f7d3ba

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-pp39-pypy39_pp73-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for cotengrust-0.2.0-pp39-pypy39_pp73-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 20a15e32b7224c35d25b92fb57e2cbe49ee05f9cd79e6f69f64f17e8e05f2c6e
MD5 fec0b7e908ea6c43f1e1cec8dbdb0097
BLAKE2b-256 fa0ab3c46dd3b58763a30790f50787b84592c583e973ea3e6963a21156ffd5eb

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-pp39-pypy39_pp73-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for cotengrust-0.2.0-pp39-pypy39_pp73-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 05280c80744070908f7d27f284a190b22970138a2629c695df7c16cd843c360d
MD5 e7ecdcb89be2bc1eaf11676228bfbd2d
BLAKE2b-256 3477254f713c64245a766e2388fb0e46a07c85fb1602be5c5f9688f59e35c53f

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-pp39-pypy39_pp73-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for cotengrust-0.2.0-pp39-pypy39_pp73-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 7ad82b30e1177b37a5fae17c7afde0b5a6f38359ae7ec0ed803e8d04e0968228
MD5 1efad6322c7e98f73c5c6e3d4f79ac10
BLAKE2b-256 2b2436dd9b7652170bda9e23228d51377eee4d2c7dd7f63dcb88cd57fb0c4653

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for cotengrust-0.2.0-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 a0413d8d84b1be7a548083a8f784f9fdd40882770550344de0c8bb402e268824
MD5 fb46b586237d9d8560ee9bce61668f59
BLAKE2b-256 3e7602d6aa3c6137afd242fbe4c5a146efcab9e123d3791c5b8f40499ea30ba9

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for cotengrust-0.2.0-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 9906804abb2af7bb667d9656bd6b25cd4701fa34e6a043a9ec43e8d2fea1453d
MD5 81d9c6b05356df0cacd2044e7c7f7800
BLAKE2b-256 127b55cfcb5cb499c835aa170ff61319d1bd6327225b06487b7fc1a3deca00bd

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for cotengrust-0.2.0-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 1e622d87635a7ba00ec75f5651f73cbaf238ea56aba7447ec58d13fb83d3ff9b
MD5 ac151ad9b942b9ea445dae56cef78fc6
BLAKE2b-256 30d6728135df0d2c2ea005b563ba2f82be1ec5be5bbfcbe71a4f9eb482297c2a

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for cotengrust-0.2.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 75284d03a1a123094c92164a757785c79ff1ea173f22cadd25ae08164cc5f3b4
MD5 b097c8be510463c3b2495c74e526c92a
BLAKE2b-256 e563ca905d6beb4ad7abc8fe678e3dad5fc1dbde7dcc399080e8e5f003596340

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-cp314-cp314-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for cotengrust-0.2.0-cp314-cp314-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a4a7c73a26a427cef4ebd871536b1930647286918356a2dcf6c87370eeaa3ae2
MD5 1635410104a4318ef7357064ab4328ab
BLAKE2b-256 bae2e7f0f5e34d65ce049877d62c3eb62e0b6092c1773ac802324b5891028fcd

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-cp314-cp314-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for cotengrust-0.2.0-cp314-cp314-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 f8a61ba67f0850b64f49ccfb334dd668854773d8c87aa5412d2f5fbc9306acde
MD5 1e6f4b89104293f47a393c19786c693a
BLAKE2b-256 8a67f42c5ac2d621911952c953d99f6e12a31ea7990dc4de28e7962fe0f2d379

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-cp313-cp313t-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for cotengrust-0.2.0-cp313-cp313t-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 2b7f7e27fa8dabb1e211bd6c86b58352d6e83f9ea727681628bcf7d2fee4ba22
MD5 12375f7d7bcc3594dce133ecd0b5b2b8
BLAKE2b-256 443dd9a137fb27afb70dcac70bfab5eda56d5843ac26e8d3111040976ea857e5

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-cp313-cp313t-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for cotengrust-0.2.0-cp313-cp313t-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 69f894202722bfb20fd35823bdbd4030f92e6ae98d7de8fae41ef259392466b8
MD5 477d76843bde9ac8d5134ec468a2cee9
BLAKE2b-256 344201d17d24a475bc79a3b99a48c6ceca1c5230fb17f0c6ce97d2b466f4249b

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-cp313-cp313t-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for cotengrust-0.2.0-cp313-cp313t-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 0f72893f7a4393710dd826ac417c250dede203a38435bafed6ee76741af2d4f1
MD5 857d59732fe774e0dc917f5e0d49b1f2
BLAKE2b-256 fa955bfe4e9e61419a3c4bd7f7372efea905b37a78ff81b0d2254b14e7ac725b

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-cp313-cp313t-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for cotengrust-0.2.0-cp313-cp313t-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 708f2730fc38904fea25ddbf68c1e6b9caf14bc83e22602079236eb7860206ce
MD5 65740bf8a6bdcd1c9ee7baf95ddeb6e7
BLAKE2b-256 2b7142f530d24d2f2f0129fbf683381ca65eaec8929ae5a5b98c072cf16176f6

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-cp313-cp313t-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for cotengrust-0.2.0-cp313-cp313t-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 f1099616139a52b8942fcf1d1e7d47f0bd0528496102653d15c816639eff5a48
MD5 1a0a576f34290d4ee743542f462b1c8f
BLAKE2b-256 7b47a58b176b0ef3b47654e6b17047761fca8f76fd8863e8518217f0b80455c8

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-cp313-cp313t-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for cotengrust-0.2.0-cp313-cp313t-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 f231c1ed49d28cf0b2bb06ae64ebb53391305ad71163d07f6a5c4a184967459f
MD5 97c75218cc84390642ccfb6873b5d095
BLAKE2b-256 755297c09b378c3168159dae6121c6692b26ac3adb3109bda0a4b336444dfeb5

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-cp313-cp313t-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for cotengrust-0.2.0-cp313-cp313t-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 7ac8dd4fcde4c223f1e981be232e233391f36ad30ef10a12986e120c2a6d6575
MD5 c559a54b7c04dc490caf9ab97062440f
BLAKE2b-256 df93577331db77b7fe4ef8a4c4943ecbea17befb8f6439c204e1d37baaed2e7f

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for cotengrust-0.2.0-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 080db9e675da6531cf44a9830c94984cefc421a5aeb6272922f60588aaed78d1
MD5 5abaaed79d1970490e20a3eb2f114cc8
BLAKE2b-256 7347e4677ef9d0d97e1740faffc313eeac457b86d6a8ab97f60982b61e9bdf78

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-cp313-cp313-win_amd64.whl.

File metadata

File hashes

Hashes for cotengrust-0.2.0-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 eb8facd8182e9787cf205112c681ecabb0de077c9ce901c7cc967214876ec6ed
MD5 b8462599795bba283d8241705faac20f
BLAKE2b-256 365a6f251cf63d1a21d785b3fed9daffa7beb48a8fd81a2ceb7547b4f22f2e05

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-cp313-cp313-win32.whl.

File metadata

  • Download URL: cotengrust-0.2.0-cp313-cp313-win32.whl
  • Upload date:
  • Size: 279.2 kB
  • Tags: CPython 3.13, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.9.4

File hashes

Hashes for cotengrust-0.2.0-cp313-cp313-win32.whl
Algorithm Hash digest
SHA256 c66bdd28190b4b0e1aa35b8535163afc1e89f41b268d6e90ced82b78867cb89e
MD5 b7571bfaca2d0f3dc5af5ddfd109f163
BLAKE2b-256 aa178bec1281b28a9da7787f947de78ef981f6c6d0eb183577c31a71d9ef4f0c

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-cp313-cp313-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for cotengrust-0.2.0-cp313-cp313-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 128077eb6a540790529346a992e8d456b799c842b15d00aa65541aac9a3e6dba
MD5 39d9fde58b109da6b30fec9d7123556e
BLAKE2b-256 7725581c52f73713f088f1a47b2a49fb9739af750fc51bb7b7f7912ffc235d78

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-cp313-cp313-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for cotengrust-0.2.0-cp313-cp313-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 09d4e94e8286e74657e5345ff094a73f49e1b99fd85c96a4f074dc0bcc904de0
MD5 9459830bf7f99b0e882a00d8adfb0d64
BLAKE2b-256 80b04add1fccb002138321997f0a8543836611156d7e5dfbf39df6f3b259f9ec

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-cp313-cp313-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for cotengrust-0.2.0-cp313-cp313-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 3e5bb3c206550d0170bc93de5cb023d62f856e421da5d939069fe974b0e50a15
MD5 a507cf3ad38e2e19cbf4f3ea792ea74d
BLAKE2b-256 eec79289005c71a9e0c1c2efb650f0cc644631f13d93829925429174e137ac6a

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-cp313-cp313-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for cotengrust-0.2.0-cp313-cp313-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 49c71e2605d4ab7c4379bb1db33b3299aa3501868f0c2e7a1bab02335e3bd500
MD5 37873ebcd4946a0326334a5b3d85ff23
BLAKE2b-256 eebe2220bed0c4ef2f60d139be7a1c98f1873d81d7850721c3782586d3ee5668

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for cotengrust-0.2.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5630cd61395518fa7de9c9a36135185b7c40cab7ac1f3a5c2f1be731988c334f
MD5 17473c6febc3338f962f968d7c5d2d82
BLAKE2b-256 9d4cc116cc70ca47faa08254df4e2ce2aaad00ed0195ea42b65483b811d1fe5d

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for cotengrust-0.2.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 4f9a0221c9fe4d60be9b7ffa369ba22d9b7f7492125dad4e0abdbec17c2b02f0
MD5 1220fbd3e8dcda791bc7b943b16d3f11
BLAKE2b-256 dd5f9bf73f6eb445b5651b9ce7cf34344af9b0198a336d88f119259ecbf33123

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for cotengrust-0.2.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 a944a18f0fbea4498d6b1e7921af5659aa1367ce40ff6166a66f9bed92c2ea40
MD5 797cd1e71fefb3ceca8601afff689410
BLAKE2b-256 77197c5a9b346558cc57240aac90153ff597f55ffc8048cbb7144a60a974aab2

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for cotengrust-0.2.0-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 2df102b4d5a65ed3e18d2c05be4fe1a379aaff4d35978200a53d40ba30c823e8
MD5 f225b3c9d4b4ebafb07fd959a8355e29
BLAKE2b-256 b4a4a4f431fbe015cac94d60412265eb0348968d7ca9c27c4bfb75135a855ff9

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for cotengrust-0.2.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 04506d37a47800e2dd10ecc1058659d83a89406c908456dcc86ec32ba921d819
MD5 0c3406c5546a85a7950fcf6bf7c6efeb
BLAKE2b-256 5bbf0d57883ca6d2e90a9ea31e6f313b83a6b55810da2cb352df459ebf69f319

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for cotengrust-0.2.0-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 2688f5cf3186fabbe90927214cc8340a9c9901ac5ee3c51b211d9cd9fcd78554
MD5 7e6bbb540b69940f705cc28ba37029f6
BLAKE2b-256 4272105abe644748f363b6b8f8c6894424aa55dcf4d14b8f74444e3ab1938961

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for cotengrust-0.2.0-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0db144513c936b5600ba433257138ce117d20e096eb13fdad902f8b2958c219d
MD5 92eb0cbacdee9b793dbe9bd921025a9c
BLAKE2b-256 418b09a76cce76a8dcaaf9de9953ecbd0d6905d50854074d2be6ee6973e500fd

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-cp313-cp313-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for cotengrust-0.2.0-cp313-cp313-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 c35066393e02a96f98b65c3978d5294f2e0ab727cf9e8b095d8d18fdb33897f1
MD5 c9aae2a660992d4f706d995a9071a8c1
BLAKE2b-256 5a7dffe773004747b134bd3186d504f747f88ee361f67627fc195c27e5f1e9f2

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for cotengrust-0.2.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 337af81b23bb1a35fda2be071ddc7e05e0b6eaad4ab38b984c2c56c06b49a6e7
MD5 5c967f002d41c2b1d59a696829973752
BLAKE2b-256 733a91363695dd82a65c0285f7227147307f9e8ea78aec933a9e8a840a08c0b6

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for cotengrust-0.2.0-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 6ae14e62f957200296c21820c6c54727a2481dc9be30d918dfd671944a383d86
MD5 2f5e8ba44e91dc34f9ac36216623fb53
BLAKE2b-256 a12b61ee4f4a16dcdb9aeb21372a26b75a0d0f25f8a0b01aa423750491b985ca

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-cp312-cp312-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for cotengrust-0.2.0-cp312-cp312-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 edff65cf211e546dd1447f50efc9e39fcc261a7530ea438b359b31251c80d809
MD5 ee2bcedff340c4e61664a2fd0c6ea421
BLAKE2b-256 1ed7fe949378a1625fce2a76c20925774d8f405aa5736d3782eb9f6cac6db6a1

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-cp312-cp312-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for cotengrust-0.2.0-cp312-cp312-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 e4c87e5b8c2b18ca74719982fefaf37d9669ec68f8362126cafc6afd6e5a7668
MD5 3d122f1f85fca9424f8579356547d813
BLAKE2b-256 4dcec980ead86275355b0c41f45304e4e88e410dd618fe79fa80cd6eceed3b2c

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-cp312-cp312-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for cotengrust-0.2.0-cp312-cp312-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 13bf4408fbc562fd37b6bb0857e5a61ffe7eb5d608891d951b220e9fac1b63cc
MD5 c5998c22896aac8c6642530b8540acce
BLAKE2b-256 02e3e76b0934c31e18243253dd8275e64a64a5d1221c043a202497be8d264415

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for cotengrust-0.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a82a4c8aaf78b8ddb616b044bed0070e9da33c8439f0bedf54537b3007623e5d
MD5 361acbd0ba446398ad3a9bac9aa71c4f
BLAKE2b-256 818d98f34043461b51256424293c631e28b82879fe562578ca9aaffefe8bf8b9

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for cotengrust-0.2.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 ecd916ca3076d7b737281d561b96b424221dbe6c9661e07c6f8a724ef34decdd
MD5 020f583247d90f4eb6177181e0af9780
BLAKE2b-256 933340679bc97207556579af69b030a47d3c9ec1ed1324ca668a321c7f9dd800

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for cotengrust-0.2.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 03bb78cfed82aeb9b03690517e8db80287f5a2fb40a3cdfe5dbfaff6de1160fd
MD5 92bb2d62cbac7cdd07493e683fe64278
BLAKE2b-256 c9b5a1c2b8d4122e34dc9926504501eaab4aff54b1283ca3d66bccd780b364dd

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for cotengrust-0.2.0-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 0d7b894e0e03ca3aaf9814582e45fa4d1e2f43ef480ff05f9e7255b8b32becc8
MD5 77195395dc581611f5b56ab4d8b27f06
BLAKE2b-256 1f4e733d84aaf0e91dc740fabeeebf2bd643fd028de547ad49526aade9936037

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for cotengrust-0.2.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2f173ea6350235b3dae0b6bba07631dc14d54fc8d12366723248e6948a41b89f
MD5 392ec94e75bbd3b073463b861440d7cc
BLAKE2b-256 5715af7cd7b1d32ada43a51c90b731fa930701ac5b7e8a934790322c13c2689e

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for cotengrust-0.2.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 049674ade0a4f81af69bcc82c9e1c6bc13e4c2f3963ecce0524e2dced9230ca7
MD5 c82aa014fb1b02df56a537403a531cfb
BLAKE2b-256 6c6a4bdb5df900c00d0234a535a53e4a5e11ec34f25eb310491ebf378822e548

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for cotengrust-0.2.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 054bf75fb0332b1a520346d78c9928730715dc2b4b241f58a409d71bc053ee49
MD5 a901cb998bb7fe0b0a63cfeead98a75f
BLAKE2b-256 5c237d918baa2f1608428f5809fa0fb23dafaddde3ab38da5700fc38342e086b

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-cp312-cp312-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for cotengrust-0.2.0-cp312-cp312-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 6c292a447df03ef242b78c97fedec20120e685724462330b868bbaf8081361b7
MD5 856610e2082d1e24412d3102816a7da0
BLAKE2b-256 919effef88577d5143eaa34f6b16cba26f0d0590c80dd8ccab514e82b4702a5a

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for cotengrust-0.2.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 eb8eb6fc5ad58e4d35565639897d92927058a969e2e13dbfa2fed538a06557b9
MD5 1f53aae101ebeacc9a7155bdcb590003
BLAKE2b-256 a0656c09ba6baf77447493cdb9a64ae36abd6e5179b0264683bb2f1a9e8a3dfe

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for cotengrust-0.2.0-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 e73110f9b8bdf20917ffd37e944995d904d3041f70cd64c4e77679f6074a7d4e
MD5 2c653adf50a475393b3f6b19af8266ea
BLAKE2b-256 dc622ee4c30f5a0b0f35c3a525180e0054ddf333f87e965db70e4a4da68b63de

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-cp311-cp311-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for cotengrust-0.2.0-cp311-cp311-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 8fdf048e19ae5e48356eaa5f0dfa5b72bd6af68f206075f09e67205729e03158
MD5 180ecba65bc994ef7e298a7344b40cfd
BLAKE2b-256 1d88b50a9af324b3e94e8ee33ace3ad9508deeb986bc374ce6f3924f3972f7a9

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-cp311-cp311-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for cotengrust-0.2.0-cp311-cp311-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 c95d61d999d1ac62d1457a71daf651ac62450f1a2aae37a6dcf61d129517b1e5
MD5 c535654cde6a7b84cce651c8788672dd
BLAKE2b-256 0c09593858cee0e18dccdf4104d927271d5684a391ec84a4f0f96d2931a79619

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-cp311-cp311-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for cotengrust-0.2.0-cp311-cp311-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 9bd1fa782fc9cd3157691071e299724e9df5a8650dfe42ec067985a150032fa8
MD5 0ae23aa42834a9b38b6379d1630a83fc
BLAKE2b-256 a8c04ad8257589745400dac41e470f850104822216beaffcd7f64f8ef2c51a2a

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for cotengrust-0.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1d4025fd18662cefaf50672a27a2dfc91ba243819f3e25feb3a421114c1264c7
MD5 1a965910a54fdcc1d324bcabef98ee0a
BLAKE2b-256 94cc6fb1c6cee8c55432f4ecc23452aa34b64be77dce10d45f9a7f87499c416e

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for cotengrust-0.2.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 4fe5f71a52bb3bcf9e4f27de6ac664742e75711defd34a5ddf24b8be0b28b24e
MD5 c54eaa5c7c0bb2b0eb2f9e6cc9ffcc95
BLAKE2b-256 66609815c0f8721aee6f448f0d5e7daae2ca6855bbeec8aa83c277598a87e9b5

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for cotengrust-0.2.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 a6a3d84a3bf1e86ce5efffe9041e4475e14bfe9fec5fdb56a7ed38280f965524
MD5 e1cc0b0ddabda11313c409dd17049d4f
BLAKE2b-256 4aae6a9982e564fd455d8ec02700636942d9e0edc56fd92734ec37f635c74fd9

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for cotengrust-0.2.0-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 a4e6efa01bd835e9086caffb76426a3afe2e883fd67f8ed192209611ae39864d
MD5 10cf3d4c29312091b4ba282e9892d073
BLAKE2b-256 12df8a3bd8344fda7065d638caf2f183b629e284e11f1af424be2a04ac44fa5f

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for cotengrust-0.2.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d8fc597e2488aedd788e40fbc1f0350941217c21cebb2f1f0876d3566f8dc2db
MD5 67932d5247c2154033dab4bd5435b1b7
BLAKE2b-256 6f0962dd14a748a3065cb6968dada7c581cd785cf1f0261ae5e4a3bedbfcf63b

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for cotengrust-0.2.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 bc3946eb7c099aefdb4d1d91776e6674c42fe57a26f27d3932402ab87d414fe1
MD5 0f56e44dfc2081a98652a7fb09f6d14f
BLAKE2b-256 ee99792b8ce4e11feab59d614e679f40278011e3ca73b33e850beea1de9382fb

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for cotengrust-0.2.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 afa48af0fdc7ecf6a982850c5b7b47358284765ac06c6449ed208670d87fa93d
MD5 8b6ffdb087c2ccc7aa1c6e2b8aa51926
BLAKE2b-256 3fea7083e3dcec1fe412976353ddfa75cddf6988e8ed7289e5a31104bc3bafe5

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-cp311-cp311-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for cotengrust-0.2.0-cp311-cp311-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 84ad894d0d0e55393b3a0ebda35fafd5749bc5065a419b3dd8c0f800fa989982
MD5 0e3616e8871891cb1d6447ed97fded36
BLAKE2b-256 43594228093c5338fcdcb7ed76ef3a0204a60a003f5c7ff7f4dab36955935fae

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for cotengrust-0.2.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 8814fae5fa38eb03be71a387bcc84cc783bbc567fc6b549664d0f5fe0a17996c
MD5 d7d97b9849168a1c32490814f4661ebd
BLAKE2b-256 c808a90808c704423584ae96e7dc4cc469547ab3a156918353699c12d0f43398

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for cotengrust-0.2.0-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 9d32166da31b274544392d2275433f8b405cf999a07da96ffae3ef81acc77145
MD5 8bb1e4395289843fce8ca4b8b773aa4b
BLAKE2b-256 1296b7037aca4065a9867f652dfc1764e7c471f2e6b7578c989a0a34e6a95c61

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-cp310-cp310-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for cotengrust-0.2.0-cp310-cp310-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 6dc45e4b8c9387ae4de2ff1ba55218cf0562121d50fd62ef21158aa39e2bbc10
MD5 05a24d6376319c7cbc62bee4d9fe20e3
BLAKE2b-256 bf525bb14b9e261fa4f319dfb91096382ccc2362cf6aec7e6d931dea6f7fe516

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-cp310-cp310-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for cotengrust-0.2.0-cp310-cp310-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 22a4fd823d14c8f6dc268641aead3fbf30f97090d76813980cc1653870920add
MD5 9b7f079790a8981bf195ce17afd18ad2
BLAKE2b-256 9c788b4371dccb204ed54690afd0a8200022ccbbae92ee355bf058d9ad6343a1

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-cp310-cp310-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for cotengrust-0.2.0-cp310-cp310-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 35ac12b5d3c7d08ac020afa2a4f9fe41f754064fa78b3ac85689b1a697aaaf1c
MD5 2b27f4266ccf0accb205435b88bb21e9
BLAKE2b-256 efd8fcb2ed44d706e0954831a654cb74c6f065e3b56e27e38e3cb20cfd446061

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for cotengrust-0.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 04c265eebb85778fa5438334e54b38bcd877ab919681ed610dd7d974f867fd00
MD5 bd5f7ece97e6ccabf5ce68dbd32e00db
BLAKE2b-256 66ead104830fccd1f33bfedb7dcaf5ee70ee6e3a5af88789e9e214ecc8377777

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for cotengrust-0.2.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 6e4396fecac1fd2485696c7e3e39835eeff700e813d312ea0a455ec380e61f04
MD5 941d1d42109a029651dbb184ae96130b
BLAKE2b-256 14dc774d94fe1d4bea750299e3e9234cce4207d629d7093032678c953c3b9b02

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for cotengrust-0.2.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 8eb93737c0c7d47acb14577eb5e70671217290a93092cb4592ed98a48f5239a8
MD5 e386b1d825cee1a71efbb45f2ce9a522
BLAKE2b-256 82f3431d7de2dee90f3d4bfd62b8f2c07c5cf7b303d27fa712cc2807ad9ab8ff

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for cotengrust-0.2.0-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 cdbb92b92a7c6ab045dfa48245246654917503f69cbc0e15e9669734b276f908
MD5 acd4a27aa71e1046d487f685e039c4ef
BLAKE2b-256 b17e96869788a6f170e858e0a4cba7a7fd701b335e201a3d0d1b51254486f3f8

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for cotengrust-0.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d24f2888bc57731bbe57c67e958c4060b9b9f0b7626c2163a90f40f7445b2249
MD5 59bd57575f25e23c1974a62772efa9fe
BLAKE2b-256 92c20ed6ebfe4c435ea49409fa88a1520ad5816af93319deaf8003e41707c409

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for cotengrust-0.2.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 de50b6a44101fa78e3d9295f3f098393909431693d0b68c7919fc2b92f959c24
MD5 d02d99dc9fd8813e866fea63c449c5ed
BLAKE2b-256 acc35eedea58eb51cf0170d34c91c39a41a52cc74f9a83789bb00aba6d6b41e1

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for cotengrust-0.2.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 189da265e81baea378d3b4e21a1ee27a9904c1097039241c403a0da7b61612a1
MD5 a23ad0e60dc85ccf3becf6da46dc976e
BLAKE2b-256 19032cbb44b41c175a3ba6631d4649d2cf4710563c599c1afb881ced7727c445

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for cotengrust-0.2.0-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 9904f9f9f300d6886660cc46249d203d954ed4c3e52cfc1f732cfc8c63578889
MD5 2d2c8b97507a9db74f7974cf9c893ba7
BLAKE2b-256 9c02e420988ef7cccdc94635431fc99cd7c01e8ffea51c2143797fe05c4fa517

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-cp39-cp39-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for cotengrust-0.2.0-cp39-cp39-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 2cc9b34e972ee34f922c0beef0a3277870770abfa188f194b9077f611dba1575
MD5 a7d0086bbeae4277f1a4317a74934ab8
BLAKE2b-256 5df8547cd01e1097fcec38a9f867591ce80dc92bf16d3c2bd08ae9dd0a3ebbee

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-cp39-cp39-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for cotengrust-0.2.0-cp39-cp39-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 edb8ffa246f5702240c6d0c4753df2a58b21770c5017f7b9ffd5b50d8113f4ad
MD5 b02bb7c29f162c3d0cc1e1e59d62b158
BLAKE2b-256 c89ba793ffffc8ad6dd6d40f8ba5341fd5cd650f5b0ee0351e8dba0f96b82da0

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-cp39-cp39-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for cotengrust-0.2.0-cp39-cp39-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 de7c6b04bc9946842a3c4a65c39df0857db512b0c6a495eaafe995e6f1ac4df9
MD5 4d790f7d352e6488fb108283f3492d70
BLAKE2b-256 b0404940ee6522ec01a2fece07d1ee7749e91d05da02e8d0d5f577f4d0d1e53b

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for cotengrust-0.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7b3a48d59d4b59dd20638c4dc6b3901f6a4907faa276a82c877ce348eb6de320
MD5 adbe3dec2de943c0d6ff1a7815bf5168
BLAKE2b-256 1d477ee2e965768157c1b7a319414c1daadf7f9c11e53ea14784221b5dea4f01

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for cotengrust-0.2.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 d2572a38d35c690543dd2d35cd2f3b48ad43f067c044d111a32bcfd0074fa12b
MD5 7e991bdd670f37e70410227813394c9a
BLAKE2b-256 981bb436c5e8560e9825b1dc4d8d5915db7e4a104f15edc54472ec21818f1240

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for cotengrust-0.2.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 13a015fbe40216be8567a66c882d6e1d30edaf410fd69ab2788631e8728caf04
MD5 a7bae1f4a644f92d15a04726a8fa4357
BLAKE2b-256 e15580928821eb4d2b3df00040c4ddb5215d5197b2681f730727b8eb7517ed75

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for cotengrust-0.2.0-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 c0a569a42903ac4080e8c97773fbad707a6fdcaa178cdfd4fb452291a3df7b92
MD5 7bb5349675fb7da44605adf6f5836e8b
BLAKE2b-256 e6b7632d85b534773bda97b5a8480f99a3fc397191edbc7aab0da9e6e86cc312

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for cotengrust-0.2.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 da7f425bca54164e665374e5437f13a0749ca0ecb73d5f7b6335f32cd86012d0
MD5 d2d070f829638c44610e686fac00ce26
BLAKE2b-256 77df8555ba46e34e2e209d559a46f89af3a37e9a28f07ce5b05edaf4f87d0dba

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for cotengrust-0.2.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 8872096f46d126d769038158c0da2b844437592c47e87d3ece128296cf2b2a5a
MD5 81989dcc7ed69d53a37c63873adb2e57
BLAKE2b-256 fb1efee63aee53f492945681bd564e5f6af82502e532bc3854ec191c34ad45d2

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-cp38-cp38-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for cotengrust-0.2.0-cp38-cp38-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 63291cf6b819269d806fb1fcb36f194ab0e687cb7500c3932ecdfafa2cd100cb
MD5 14772896384342a5bd8bddf4f2e1694f
BLAKE2b-256 1f9cb26a2bf1a4732f940296297cb2a1406f91c1103cfab13101d1b4513a9847

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-cp38-cp38-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for cotengrust-0.2.0-cp38-cp38-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 1dc99a207b0faf05984abf9ed8f5d1666ab530db31f5ff61f554993cc1759ddd
MD5 6e8ba0c4bf50abf277b0035b5ea7d703
BLAKE2b-256 db53085f49c47f0a2b1f2bf4f283deb3cc70a01caf8e339a58f0f6858987d0b2

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-cp38-cp38-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for cotengrust-0.2.0-cp38-cp38-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 522367e04de7e8a471fedb3c6363ab6f83a42cdb88a4acb5daaae8bdce569497
MD5 cf37a55c605ccd715e16ec1cac6c3e5a
BLAKE2b-256 895bc5bf40272dbf9ff2561ed825b475444ef6bafefb847b71da328d335ee265

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-cp38-cp38-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for cotengrust-0.2.0-cp38-cp38-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 08ceec2047057859ff6c6a9ee4de01cba09ef75e694f904f96960beb7150c3bc
MD5 ee335146d84ea39866b17d742835481d
BLAKE2b-256 b940baa95af75bc569ce4ae605092159914c64ff5c4542fbc15500c2bf3aa890

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for cotengrust-0.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 68e26ae95944388af923200aa0279176be01092f105445d5408ac9c1e9458f01
MD5 119487a179d605cf4124ebb0c09f7eb1
BLAKE2b-256 8d2eacbcbc6c3345190f6181d1142c5d58a520e585e3393d05757e70e1fbb1c0

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for cotengrust-0.2.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 1b3f77378ec4f0fa7aeb2bd0c5a3410d52c09946a11df42b80f568e4af53b37b
MD5 d215375e32fec70fd33c7e5e620e5d2b
BLAKE2b-256 665656ecc9961c7df708913042f6aa161cfa995329d444f11218b672b1caee5c

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for cotengrust-0.2.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 4b619f86c0ea70fa8c28325737aa19417b1620a3bfc4883037fb4a7053dd2712
MD5 f5f115d80d1daa470bfafe943b1b46b1
BLAKE2b-256 6fe24b121e489d14c59dc85a9e7da79df55f87f9580f993a54e77029dbdff643

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for cotengrust-0.2.0-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 961ca0d3a13fde659f25e5850dbf093de1844daa85388e8cd89ea94e3f0d6fa9
MD5 228c8accdc9b59dbc8a9916ec3859027
BLAKE2b-256 03bf1ab3f19cbaae1e3a90607eeb5c45b4a6f6c0809758de1daa62a855b47912

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for cotengrust-0.2.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1a8ff000ea5eecfc293525567773c6aa5150860fb5eb15fca1c64e761e2757c4
MD5 7406b708d8dc511bc016bd370ef82c5d
BLAKE2b-256 fc81fb48dc4bc292a8eda66a5bed155b0c8f23500f55e56658c7adf6b9a37fcc

See more details on using hashes here.

File details

Details for the file cotengrust-0.2.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for cotengrust-0.2.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 ec9dddb3951cd3afcd307a7066f55fa1ca4597925e406f9a0d4383b27a93e7a7
MD5 d3b1436eb40190a7c4a25c879aa0b0ac
BLAKE2b-256 6ff96d4b889b335013b910636e894e13d873cd3639bc1f042aef5735a4076de0

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page