Skip to main content

Calculate various state-of-the-art land-atmosphere coupling metrics

Project description

Calculate various state-of-the-art land-atmosphere coupling metrics

Documentation Status Travis-CI Build Status Coverage Status

Free software: MIT license

Installation

pip install coupling-metrics

You can also install the in-development version with:

pip install https://github.com/abtawfik/coupling-metrics/archive/master.zip

Documentation

To use CoMeT either on the command-line or in your python code check out the docs.

https://coupling-metrics.readthedocs.io/

Example Usage

There are two ways to use CoMeT after installation. Using the python API or on the command-line. See both uses below.

CLI Example

Say you are trying to compute the terrestrial coupling index for NARR data (North American Regional Reanalysis) between latent heat flux and soil moisture for a single year. You invoke this one the command-line:

comet coupling --xname=soilm --yname=lhtfl --averaging=season --outname=NARR_lhf_vs_soilm_2017.nc lhtfl.2017.nc soilm.2017.nc

Be mindful of memory in this case because currently all the data need to be loaded into memory. This might change in the future.

If you want to see a list of metrics:

comet --help

To see the arguments for a list of metrics:

comet mixing --help

Python API

Each metric can also be called directly from python.

import comet as cm
import xarray as xr
from glob import glob

# Load data using xarray
latent_heat_files = glob('lhtfl.????.nc')
soilm_files       = glob('soilm.????.nc')
ds                = xr.open_mfdataset(latent_heat_files + soilm_files)

# Compute coupling index
terra_coupling = cm.CouplingIndex()
terra_coupling = terra_coupling.compute(ds, xname='soilm', yname='lhtfl', averaging='month')

# Output it to a file (may take a while depending on how much data is being processed)
terra_coupling.to_netcdf('My_new_NARR_Terra_coupling_lhf_vs_soilm.nc')

To see a list of metrics

import comet as cm
print(cm.list_metrics)

When to Use CoMeT?

The metrics are meant to facilitate use of the most common land-atmosphere coupling metrics for research purposes.

List of available metrics

1. Convective Triggering Potential (aka CTP-HiLow or just CTP) Evaluates morning atmospheric profiles to determine whether dry or wet soils are more likely to trigger convection

2. Mixing Diagrams Uses the diurnal covariation of temperature and humidity to quantify heat and moisture fluxes into the planetary boundary layer

3. Terrestrial Coupling Index (aka terrestrial coupling parameter) Quantifies the degree to which soil moisture variations control changes in surface energy fluxes. Can be latent or sensible heat flux and is generally enough to apply to other surface variables such as the relationship between LAI and sensible heat flux.

4. Heated Condensation Framework Assesses the atmospheric background state with respect to convective initiation and identifies local versus non-locally triggered moist convection.

5. Relative Humidity Tendency Returns the contribution of surface energy fluxes, dry air entrainment, heat entrainment, and boundary layer growth to changes in top of boundary layer relative humidity.

6. Soil Moisture Memory (the statisitcal form) Determines the timescale at which initial soil moisture anomalies are retained over time. The lagged autocorrelation of soil moisture is used to make the determination of memory.

Development

To run the all tests run:

tox

Note, to combine the coverage data from all the tox environments run:

Windows

set PYTEST_ADDOPTS=--cov-append
tox

Other

PYTEST_ADDOPTS=--cov-append tox

Changelog

1.0.0 (2020-01-10)

  • First release on PyPI.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

coupling-metrics-1.0.0.tar.gz (38.1 kB view details)

Uploaded Source

Built Distribution

coupling_metrics-1.0.0-py2.py3-none-any.whl (35.8 kB view details)

Uploaded Python 2Python 3

File details

Details for the file coupling-metrics-1.0.0.tar.gz.

File metadata

  • Download URL: coupling-metrics-1.0.0.tar.gz
  • Upload date:
  • Size: 38.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/42.0.2 requests-toolbelt/0.9.1 tqdm/4.41.1 CPython/3.7.5

File hashes

Hashes for coupling-metrics-1.0.0.tar.gz
Algorithm Hash digest
SHA256 e267e83cad2dae810eeeaee547eebb787a2311304df307e12d9b952ede4fe9a6
MD5 de8b98d6344da031cda13bfa600c5d04
BLAKE2b-256 ba524a75ed2db473eb6746af40511c2fc18d4eafb33a5d341e10b59177291168

See more details on using hashes here.

File details

Details for the file coupling_metrics-1.0.0-py2.py3-none-any.whl.

File metadata

  • Download URL: coupling_metrics-1.0.0-py2.py3-none-any.whl
  • Upload date:
  • Size: 35.8 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/42.0.2 requests-toolbelt/0.9.1 tqdm/4.41.1 CPython/3.7.5

File hashes

Hashes for coupling_metrics-1.0.0-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 4d76a904979281f0dc73efe73334b64281979a6732a86e39c1baa629d7411b02
MD5 21e7efff730ed87ad99f1c8b9500aa6a
BLAKE2b-256 acbf1956bc47a800a43093b8e9ec05ee0cebbea762ed6a9fcfc992dd2e97a0d0

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page