Skip to main content

croston model for intermittent time series

Project description


A package to forecast intermittent time series using croston's method


import numpy as np import random from croston import croston import matplotlib.pyplot as plt

a = np.zeros(50) val = np.array(random.sample(range(100,200), 10)) idxs = random.sample(range(50), 10)

ts = np.insert(a, idxs, val)

fit_pred = croston.fit_croston(ts, 10)

yhat = np.concatenate([fit_pred['croston_fittedvalues'], fit_pred['croston_forecast']])

plt.plot(ts) plt.plot(yhat)

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for croston, version
Filename, size File type Python version Upload date Hashes
Filename, size croston- (3.7 kB) File type Wheel Python version py3 Upload date Hashes View hashes
Filename, size croston- (6.5 MB) File type Source Python version None Upload date Hashes View hashes

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN SignalFx SignalFx Supporter DigiCert DigiCert EV certificate StatusPage StatusPage Status page