Skip to main content

Convert CSV files into a SQLite database

Project description

csvs-to-sqlite

PyPI Changelog Tests License

Convert CSV files into a SQLite database. Browse and publish that SQLite database with Datasette.

[!NOTE] This tool is infrequently maintained. I suggest using sqlite-utils for importing CSV and TSV to SQLite instead for most cases.

Basic usage:

csvs-to-sqlite myfile.csv mydatabase.db

This will create a new SQLite database called mydatabase.db containing a single table, myfile, containing the CSV content.

You can provide multiple CSV files:

csvs-to-sqlite one.csv two.csv bundle.db

The bundle.db database will contain two tables, one and two.

This means you can use wildcards:

csvs-to-sqlite ~/Downloads/*.csv my-downloads.db

If you pass a path to one or more directories, the script will recursively search those directories for CSV files and create tables for each one.

csvs-to-sqlite ~/path/to/directory all-my-csvs.db

Handling TSV (tab-separated values)

You can use the -s option to specify a different delimiter. If you want to use a tab character you'll need to apply shell escaping like so:

csvs-to-sqlite my-file.tsv my-file.db -s $'\t'

Refactoring columns into separate lookup tables

Let's say you have a CSV file that looks like this:

county,precinct,office,district,party,candidate,votes
Clark,1,President,,REP,John R. Kasich,5
Clark,2,President,,REP,John R. Kasich,0
Clark,3,President,,REP,John R. Kasich,7

(Real example taken from the Open Elections project)

You can now convert selected columns into separate lookup tables using the new --extract-column option (shortname: -c) - for example:

csvs-to-sqlite openelections-data-*/*.csv \
    -c county:County:name \
    -c precinct:Precinct:name \
    -c office -c district -c party -c candidate \
    openelections.db

The format is as follows:

column_name:optional_table_name:optional_table_value_column_name

If you just specify the column name e.g. -c office, the following table will be created:

CREATE TABLE "office" (
    "id" INTEGER PRIMARY KEY,
    "value" TEXT
);

If you specify all three options, e.g. -c precinct:Precinct:name the table will look like this:

CREATE TABLE "Precinct" (
    "id" INTEGER PRIMARY KEY,
    "name" TEXT
);

The original tables will be created like this:

CREATE TABLE "ca__primary__san_francisco__precinct" (
    "county" INTEGER,
    "precinct" INTEGER,
    "office" INTEGER,
    "district" INTEGER,
    "party" INTEGER,
    "candidate" INTEGER,
    "votes" INTEGER,
    FOREIGN KEY (county) REFERENCES County(id),
    FOREIGN KEY (party) REFERENCES party(id),
    FOREIGN KEY (precinct) REFERENCES Precinct(id),
    FOREIGN KEY (office) REFERENCES office(id),
    FOREIGN KEY (candidate) REFERENCES candidate(id)
);

They will be populated with IDs that reference the new derived tables.

Installation

pip install csvs-to-sqlite

csvs-to-sqlite now requires Python 3. If you are running Python 2 you can install the last version to support Python 2:

pip install csvs-to-sqlite==0.9.2

csvs-to-sqlite --help

Usage: csvs-to-sqlite [OPTIONS] PATHS... DBNAME

  PATHS: paths to individual .csv files or to directories containing .csvs

  DBNAME: name of the SQLite database file to create

Options:
  -s, --separator TEXT            Field separator in input .csv
  -q, --quoting INTEGER           Control field quoting behavior per csv.QUOTE_*
                                  constants. Use one of QUOTE_MINIMAL (0),
                                  QUOTE_ALL (1), QUOTE_NONNUMERIC (2) or
                                  QUOTE_NONE (3).
  --skip-errors                   Skip lines with too many fields instead of
                                  stopping the import
  --replace-tables                Replace tables if they already exist
  -t, --table TEXT                Table to use (instead of using CSV filename)
  -c, --extract-column TEXT       One or more columns to 'extract' into a
                                  separate lookup table. If you pass a simple
                                  column name that column will be replaced with
                                  integer foreign key references to a new table
                                  of that name. You can customize the name of
                                  the table like so:     state:States:state_name
                                  
                                  This will pull unique values from the 'state'
                                  column and use them to populate a new 'States'
                                  table, with an id column primary key and a
                                  state_name column containing the strings from
                                  the original column.
  -d, --date TEXT                 One or more columns to parse into ISO
                                  formatted dates
  -dt, --datetime TEXT            One or more columns to parse into ISO
                                  formatted datetimes
  -df, --datetime-format TEXT     One or more custom date format strings to try
                                  when parsing dates/datetimes
  -pk, --primary-key TEXT         One or more columns to use as the primary key
  -f, --fts TEXT                  One or more columns to use to populate a full-
                                  text index
  -i, --index TEXT                Add index on this column (or a compound index
                                  with -i col1,col2)
  --shape TEXT                    Custom shape for the DB table - format is
                                  csvcol:dbcol(TYPE),...
  --filename-column TEXT          Add a column with this name and populate with
                                  CSV file name
  --fixed-column <TEXT TEXT>...   Populate column with a fixed string
  --fixed-column-int <TEXT INTEGER>...
                                  Populate column with a fixed integer
  --fixed-column-float <TEXT FLOAT>...
                                  Populate column with a fixed float
  --no-index-fks                  Skip adding index to foreign key columns
                                  created using --extract-column (default is to
                                  add them)
  --no-fulltext-fks               Skip adding full-text index on values
                                  extracted using --extract-column (default is
                                  to add them)
  --just-strings                  Import all columns as text strings by default
                                  (and, if specified, still obey --shape,
                                  --date/datetime, and --datetime-format)
  --version                       Show the version and exit.
  --help                          Show this message and exit.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

csvs_to_sqlite-1.3.1.tar.gz (22.7 kB view details)

Uploaded Source

Built Distribution

csvs_to_sqlite-1.3.1-py2.py3-none-any.whl (16.9 kB view details)

Uploaded Python 2Python 3

File details

Details for the file csvs_to_sqlite-1.3.1.tar.gz.

File metadata

  • Download URL: csvs_to_sqlite-1.3.1.tar.gz
  • Upload date:
  • Size: 22.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for csvs_to_sqlite-1.3.1.tar.gz
Algorithm Hash digest
SHA256 6a54e29168f35074639700b66be01c66e5aff5e771607fe62d588161b22f517a
MD5 26acbeb0c8cda3421b6903cf9927a70f
BLAKE2b-256 90121e3d87cf57a0eac7da70c949c3a02211752cda4f8786ee9e3dce8c0dfb46

See more details on using hashes here.

Provenance

The following attestation bundles were made for csvs_to_sqlite-1.3.1.tar.gz:

Publisher: publish.yml on simonw/csvs-to-sqlite

Attestations: Values shown here reflect the state when the release was signed and may no longer be current.

File details

Details for the file csvs_to_sqlite-1.3.1-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for csvs_to_sqlite-1.3.1-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 0f92a8239a659b15bbaf0e213be40de3ff06a30cb909c0b56b91b0047b8c6329
MD5 9b08ea740f99c7be0c99b625b21006b3
BLAKE2b-256 700db07e2b4269e47d1ee12f0c269d2450fc7529a48fd43a99bfa39a6d228f3f

See more details on using hashes here.

Provenance

The following attestation bundles were made for csvs_to_sqlite-1.3.1-py2.py3-none-any.whl:

Publisher: publish.yml on simonw/csvs-to-sqlite

Attestations: Values shown here reflect the state when the release was signed and may no longer be current.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page