Skip to main content

Create tabular synthetic data using a conditional GAN

Project description


This repository is part of The Synthetic Data Vault Project, a project from DataCebo.

Development Status PyPI Shield Unit Tests Downloads Coverage Status

Overview

CTGAN is a collection of Deep Learning based synthetic data generators for single table data, which are able to learn from real data and generate synthetic data with high fidelity.

Important Links
:computer: Website Check out the SDV Website for more information about our overall synthetic data ecosystem.
:orange_book: Blog A deeper look at open source, synthetic data creation and evaluation.
:book: Documentation Quickstarts, User and Development Guides, and API Reference.
:octocat: Repository The link to the Github Repository of this library.
:keyboard: Development Status This software is in its Pre-Alpha stage.
Community Join our Slack Workspace for announcements and discussions.

Currently, this library implements the CTGAN and TVAE models described in the Modeling Tabular data using Conditional GAN paper, presented at the 2019 NeurIPS conference.

Install

Use CTGAN through the SDV library

:warning: If you're just getting started with synthetic data, we recommend installing the SDV library which provides user-friendly APIs for accessing CTGAN. :warning:

The SDV library provides wrappers for preprocessing your data as well as additional usability features like constraints. See the SDV documentation to get started.

Use the CTGAN standalone library

Alternatively, you can also install and use CTGAN directly, as a standalone library:

Using pip:

pip install ctgan

Using conda:

conda install -c pytorch -c conda-forge ctgan

When using the CTGAN library directly, you may need to manually preprocess your data into the correct format, for example:

  • Continuous data must be represented as floats
  • Discrete data must be represented as ints or strings
  • The data should not contain any missing values

Usage Example

In this example we load the Adult Census Dataset* which is a built-in demo dataset. We use CTGAN to learn from the real data and then generate some synthetic data.

from ctgan import CTGAN
from ctgan import load_demo

real_data = load_demo()

# Names of the columns that are discrete
discrete_columns = [
    'workclass',
    'education',
    'marital-status',
    'occupation',
    'relationship',
    'race',
    'sex',
    'native-country',
    'income'
]

ctgan = CTGAN(epochs=10)
ctgan.fit(real_data, discrete_columns)

# Create synthetic data
synthetic_data = ctgan.sample(1000)

*For more information about the dataset see: Dua, D. and Graff, C. (2019). UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and Computer Science.

Join our community

Join our Slack channel to discuss more about CTGAN and synthetic data. If you find a bug or have a feature request, you can also open an issue on our GitHub.

Interested in contributing to CTGAN? Read our Contribution Guide to get started.

Citing CTGAN

If you use CTGAN, please cite the following work:

Lei Xu, Maria Skoularidou, Alfredo Cuesta-Infante, Kalyan Veeramachaneni. Modeling Tabular data using Conditional GAN. NeurIPS, 2019.

@inproceedings{ctgan,
  title={Modeling Tabular data using Conditional GAN},
  author={Xu, Lei and Skoularidou, Maria and Cuesta-Infante, Alfredo and Veeramachaneni, Kalyan},
  booktitle={Advances in Neural Information Processing Systems},
  year={2019}
}

Related Projects

Please note that these projects are external to the SDV Ecosystem. They are not affiliated with or maintained by DataCebo.




The Synthetic Data Vault Project was first created at MIT's Data to AI Lab in 2016. After 4 years of research and traction with enterprise, we created DataCebo in 2020 with the goal of growing the project. Today, DataCebo is the proud developer of SDV, the largest ecosystem for synthetic data generation & evaluation. It is home to multiple libraries that support synthetic data, including:

  • 🔄 Data discovery & transformation. Reverse the transforms to reproduce realistic data.
  • 🧠 Multiple machine learning models -- ranging from Copulas to Deep Learning -- to create tabular, multi table and time series data.
  • 📊 Measuring quality and privacy of synthetic data, and comparing different synthetic data generation models.

Get started using the SDV package -- a fully integrated solution and your one-stop shop for synthetic data. Or, use the standalone libraries for specific needs.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ctgan-0.11.0.tar.gz (26.1 kB view details)

Uploaded Source

Built Distribution

ctgan-0.11.0-py3-none-any.whl (24.4 kB view details)

Uploaded Python 3

File details

Details for the file ctgan-0.11.0.tar.gz.

File metadata

  • Download URL: ctgan-0.11.0.tar.gz
  • Upload date:
  • Size: 26.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.9.6 readme-renderer/42.0 requests/2.31.0 requests-toolbelt/1.0.0 urllib3/2.0.6 tqdm/4.66.1 importlib-metadata/6.8.0 keyring/24.2.0 rfc3986/2.0.0 colorama/0.4.6 CPython/3.10.13

File hashes

Hashes for ctgan-0.11.0.tar.gz
Algorithm Hash digest
SHA256 dd08b02370d375663f282f020d1729ee80e4b16bf27a61c82156bfe690c2092b
MD5 777a77f45f647eb710a68aa659ce9da0
BLAKE2b-256 89959ddfd01c8f668fc85048eaa6caf49009fc4cda2395848347261eb67c64cc

See more details on using hashes here.

File details

Details for the file ctgan-0.11.0-py3-none-any.whl.

File metadata

  • Download URL: ctgan-0.11.0-py3-none-any.whl
  • Upload date:
  • Size: 24.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.9.6 readme-renderer/42.0 requests/2.31.0 requests-toolbelt/1.0.0 urllib3/2.0.6 tqdm/4.66.1 importlib-metadata/6.8.0 keyring/24.2.0 rfc3986/2.0.0 colorama/0.4.6 CPython/3.10.13

File hashes

Hashes for ctgan-0.11.0-py3-none-any.whl
Algorithm Hash digest
SHA256 ae84b28ae0d131b729c7bd3439db871941c2ffc92755a106f811a085f013b656
MD5 e7276861b3c4bfb029a28a4b617cdff5
BLAKE2b-256 900cdb2b3039762226ba93004aa4a104e3471c4ae596fbecbb3db236900663bf

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page