Skip to main content
Help us improve Python packaging – donate today!

Random Forests for the GPU using PyCUDA

Project Description

CudaTree is an implementation of Leo Breiman’s Random Forests adapted to run on the GPU. A random forest is an ensemble of randomized decision trees which vote together to predict new labels. CudaTree parallelizes the construction of each individual tree in the ensemble and thus is able to train faster than the latest version of scikits-learn.

Usage

import numpy as np
from cudatree import load_data, RandomForestClassifier
x_train, y_train = load_data("digits")
forest = RandomForestClassifier(n_estimators = 50, max_features = 6)
forest.fit(x_train, y_train)
forest.predict(x_train)

Dependencies

CudaTree is writen for Python 2.7 and depends on:

  • scikit-learn
  • NumPy
  • PyCUDA
  • Parakeet

Release history Release notifications

This version
History Node

0.6

History Node

0.4

History Node

0.3

History Node

0.2.4

History Node

0.2.3

History Node

0.2.2

History Node

0.2.1

History Node

0.2

History Node

0.1.1

History Node

0.1.0

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Filename, size & hash SHA256 hash help File type Python version Upload date
cudatree-0.6.tar.gz (22.8 kB) Copy SHA256 hash SHA256 Source None Dec 8, 2013

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging CloudAMQP CloudAMQP RabbitMQ AWS AWS Cloud computing Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page