This is a pre-production deployment of Warehouse. Changes made here affect the production instance of PyPI (
Help us improve Python packaging - Donate today!

Python wrappers for the NVIDIA cudnn 6.5 R1 libraries.

Project Description

Python wrappers for the NVIDIA cuDNN libraries.

This is a set of minimal Python wrappers for the NVIDIA cuDNN library of convolutional neural network primitives. NVIDIA cuDNN is available free of charge, but requires an NVIDIA developer account to download. Users should follow the cuDNN API documentation to use these wrappers, as they faithfully replicate the cuDNN C API.

These wrappers expose the full cuDNN API as Python functions, but are minimalistic in that they don’t implement any higher order functionality, such as operating directly on data structures like PyCUDA GPUArray or cudamat CUDAMatrix. Since the interface faithfully replicates the C API, the user is responsible for allocating and deallocating handles to all cuDNN data structures and passing references to arrays as pointers. However, cuDNN status codes are translated to Python exceptions. The most common application for these wrappers will be to be used along PyCUDA, but they will work equally well with other frameworks such as CUDAMat.

Users need to make sure that they pass all arguments as the correct data type, that is ctypes.c_void_p for all handles and array pointers and ctypes.c_int for all integer arguments and enums. Here is an example on how to perform forward convolution on a PyCUDA GPUArray:

import pycuda.autoinit
from pycuda import gpuarray
import libcudnn, ctypes
import numpy as np

# Create a cuDNN context
cudnn_context = libcudnn.cudnnCreate()

# Set some options and tensor dimensions
accumulate = libcudnn.cudnnAccumulateResults['CUDNN_RESULT_NO_ACCUMULATE']
tensor_format = libcudnn.cudnnTensorFormat['CUDNN_TENSOR_NCHW']
data_type = libcudnn.cudnnDataType['CUDNN_DATA_FLOAT']
convolution_mode = libcudnn.cudnnConvolutionMode['CUDNN_CROSS_CORRELATION']
convolution_path = libcudnn.cudnnConvolutionPath['CUDNN_CONVOLUTION_FORWARD']

n_input = 100
filters_in = 10
filters_out = 8
height_in = 20
width_in = 20
height_filter = 5
width_filter = 5
pad_h = 4
pad_w = 4
vertical_stride = 1
horizontal_stride = 1
upscalex = 1
upscaley = 1

# Input tensor
X = gpuarray.to_gpu(np.random.rand(n_input, filters_in, height_in, width_in)

# Filter tensor
filters = gpuarray.to_gpu(np.random.rand(filters_out,
    filters_in, height_filter, width_filter).astype(np.float32))

#Descriptor for input
X_desc = libcudnn.cudnnCreateTensor4dDescriptor()
libcudnn.cudnnSetTensor4dDescriptor(X_desc, tensor_format, data_type,
    n_input, filters_in, height_in, width_in)

# Filter descriptor
filters_desc = libcudnn.cudnnCreateFilterDescriptor()
libcudnn.cudnnSetFilterDescriptor(filters_desc, data_type, filters_out,
    filters_in, height_filter, width_filter)

# Convolution descriptor
conv_desc = libcudnn.cudnnCreateConvolutionDescriptor()
libcudnn.cudnnSetConvolutionDescriptor(conv_desc, X_desc, filters_desc,
    pad_h, pad_w, vertical_stride, horizontal_stride, upscalex, upscaley,

# Get output dimensions (first two values are n_input and filters_out)
_, _, height_output, width_output = libcudnn.cudnnGetOutputTensor4dDim(
    conv_desc, convolution_path)

# Output tensor
Y = gpuarray.empty((n_input, filters_out, height_output, width_output), np.float32)
Y_desc = libcudnn.cudnnCreateTensor4dDescriptor()
libcudnn.cudnnSetTensor4dDescriptor(Y_desc, tensor_format, data_type, n_input,
    filters_out, height_output, width_output)

# Get pointers to GPU memory
X_data = ctypes.c_void_p(int(X.gpudata))
filters_data = ctypes.c_void_p(int(filters.gpudata))
Y_data = ctypes.c_void_p(int(Y.gpudata))

# Perform convolution
libcudnn.cudnnConvolutionForward(cudnn_context, X_desc, X_data,
    filters_desc, filters_data, conv_desc,
    Y_desc, Y_data, accumulate)

# Clean up


Install from PyPi with

pip install cudnn-python-wrappers
Release History

Release History

History Node


History Node


This version
History Node


History Node


Download Files

Download Files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

File Name & Checksum SHA256 Checksum Help Version File Type Upload Date
cudnn-python-wrappers-1.0.tar.gz (10.7 kB) Copy SHA256 Checksum SHA256 Source Jan 19, 2015

Supported By

WebFaction WebFaction Technical Writing Elastic Elastic Search Pingdom Pingdom Monitoring Dyn Dyn DNS Sentry Sentry Error Logging CloudAMQP CloudAMQP RabbitMQ Heroku Heroku PaaS Kabu Creative Kabu Creative UX & Design Fastly Fastly CDN DigiCert DigiCert EV Certificate Rackspace Rackspace Cloud Servers DreamHost DreamHost Log Hosting