Skip to main content

A client for the Microsoft Azure Custom Vision Service

Project description

https://travis-ci.org/CatalystCode/py_custom_vision_client.svg?branch=master https://img.shields.io/pypi/v/custom_vision_client.svg

py_custom_vision_client

This repository contains a simple Python client for the Custom Vision Service.

Usage

# first, train a model

from custom_vision_client import TrainingClient, TrainingConfig

azure_region = "southcentralus"
training_key = "my-training-key"  # from settings pane on customvision.ai

training_client = TrainingClient(TrainingConfig(azure_region, training_key))
project_id = training_client.create_project("my-project-name").Id

training_client.create_tag(project_id, "Cat")
training_client.create_tag(project_id, "Dog")

training_client.add_training_images(project_id, ["kitten.jpg"], "Cat")
training_client.add_training_images(project_id, ["akita.png", "spitz.png"], "Dog")
training_client.add_training_images(project_id, ["best-animal-pals.jpg"], "Cat", "Dog")

model_id = training_client.trigger_training(project_id).Id

# then, use the model to predict:

from custom_vision_client import PredictionClient, PredictionConfig

azure_region = "southcentralus"
prediction_key = "my-prediction-key"  # from settings pane on customvision.ai

prediction_client = PredictionClient(PredictionConfig(azure_region, project_id, prediction_key))

predictions = prediction_client.classify_image("cat.jpg", model_id)  # could also be a url to a file
best_prediction = max(predictions, key=lambda _: _.Probability)
print(best_prediction.Tag)

Command-line interface

You can also interact with the Custom Vision Service via a command-line interface:

# first, train a model
python3 -m custom_vision_client.training \
  --key="my-training-key" \
  --projectname="my-project-name" \
  --imagesroot="/path/to/images"

# then, use the model to predict:
python3 -m custom_vision_client.prediction \
  --key="my-prediction-key" \
  --projectid="my-project-id-from-training" \
  --modelid="my-model-id-from-training" \
  --image="path-or-url-to-image"

The command-line interface assumes that your training images are organized in folders such that every folder contains all the training images for that label:

/path/to/images
├── label_one
│   ├── image_1.jpg
│   ├── image_2.png
│   └── image_3.png
└── label_two
    ├── image_4.jpg
    └── image_5.jpg

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Filename, size & hash SHA256 hash help File type Python version Upload date
custom_vision_client-0.0.8.tar.gz (5.6 kB) Copy SHA256 hash SHA256 Source None

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN SignalFx SignalFx Supporter DigiCert DigiCert EV certificate StatusPage StatusPage Status page