Skip to main content

A domain-specific language for modeling convex optimization problems in Python.

Project description

CVXPY

Build Status PyPI - downloads Conda - downloads Discord Coverage Benchmarks OpenSSF Scorecard

The CVXPY documentation is at cvxpy.org.

We are building a CVXPY community on Discord. Join the conversation! For issues and long-form discussions, use Github Issues and Github Discussions.

Contents

CVXPY is a Python-embedded modeling language for convex optimization problems. It allows you to express your problem in a natural way that follows the math, rather than in the restrictive standard form required by solvers.

For example, the following code solves a least-squares problem where the variable is constrained by lower and upper bounds:

import cvxpy as cp
import numpy

# Problem data.
m = 30
n = 20
numpy.random.seed(1)
A = numpy.random.randn(m, n)
b = numpy.random.randn(m)

# Construct the problem.
x = cp.Variable(n)
objective = cp.Minimize(cp.sum_squares(A @ x - b))
constraints = [0 <= x, x <= 1]
prob = cp.Problem(objective, constraints)

# The optimal objective is returned by prob.solve().
result = prob.solve()
# The optimal value for x is stored in x.value.
print(x.value)
# The optimal Lagrange multiplier for a constraint
# is stored in constraint.dual_value.
print(constraints[0].dual_value)

With CVXPY, you can model

  • convex optimization problems,
  • mixed-integer convex optimization problems,
  • geometric programs, and
  • quasiconvex programs.

CVXPY is not a solver. It relies upon the open source solvers Clarabel, SCS, OSQP and HiGHS. Additional solvers are available, but must be installed separately.

CVXPY began as a Stanford University research project. It is now developed by many people, across many institutions and countries.

Installation

CVXPY is available on PyPI, and can be installed with

pip install cvxpy

CVXPY can also be installed with conda, using

conda install -c conda-forge cvxpy

CVXPY has the following dependencies:

  • Python >= 3.11
  • Clarabel >= 0.5.0
  • OSQP >= 1.0.0
  • SCS >= 3.2.4.post1
  • NumPy >= 2.0.0
  • SciPy >= 1.13.0
  • highspy >= 1.11.0

For detailed instructions, see the installation guide.

Getting started

To get started with CVXPY, check out the following:

Issues

We encourage you to report issues using the Github tracker. We welcome all kinds of issues, especially those related to correctness, documentation, performance, and feature requests.

For basic usage questions (e.g., "Why isn't my problem DCP?"), please use StackOverflow instead.

Community

The CVXPY community consists of researchers, data scientists, software engineers, and students from all over the world. We welcome you to join us!

  • To chat with the CVXPY community in real-time, join us on Discord.
  • To have longer, in-depth discussions with the CVXPY community, use Github Discussions.
  • To share feature requests and bug reports, use Github Issues.

Please be respectful in your communications with the CVXPY community, and make sure to abide by our code of conduct.

Contributing

We appreciate all contributions. You don't need to be an expert in convex optimization to help out.

You should first install CVXPY from source. Here are some simple ways to start contributing immediately:

If you'd like to add a new example to our library, or implement a new feature, please get in touch with us first to make sure that your priorities align with ours.

Contributions should be submitted as pull requests. A member of the CVXPY development team will review the pull request and guide you through the contributing process.

Before starting work on your contribution, please read the contributing guide.

Team

CVXPY is a community project, built from the contributions of many researchers and engineers.

CVXPY is developed and maintained by Steven Diamond, Akshay Agrawal, Riley Murray, Philipp Schiele, Bartolomeo Stellato, and Parth Nobel, with many others contributing significantly. A non-exhaustive list of people who have shaped CVXPY over the years includes Stephen Boyd, Eric Chu, Robin Verschueren, Jaehyun Park, Enzo Busseti, AJ Friend, Judson Wilson, Chris Dembia, and William Zhang.

For more information about the team and our processes, see our governance document.

Citing

If you use CVXPY for academic work, we encourage you to cite our papers. If you use CVXPY in industry, we'd love to hear from you as well, on Discord or over email.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cvxpy_base-1.8.1.tar.gz (1.8 MB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

cvxpy_base-1.8.1-cp314-cp314t-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.14tmanylinux: glibc 2.24+ x86-64manylinux: glibc 2.28+ x86-64

cvxpy_base-1.8.1-cp314-cp314t-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.14tmanylinux: glibc 2.24+ ARM64manylinux: glibc 2.28+ ARM64

cvxpy_base-1.8.1-cp314-cp314t-macosx_10_15_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.14tmacOS 10.15+ x86-64

cvxpy_base-1.8.1-cp314-cp314t-macosx_10_15_universal2.whl (1.7 MB view details)

Uploaded CPython 3.14tmacOS 10.15+ universal2 (ARM64, x86-64)

cvxpy_base-1.8.1-cp314-cp314-win_amd64.whl (1.3 MB view details)

Uploaded CPython 3.14Windows x86-64

cvxpy_base-1.8.1-cp314-cp314-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.14manylinux: glibc 2.24+ x86-64manylinux: glibc 2.28+ x86-64

cvxpy_base-1.8.1-cp314-cp314-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.14manylinux: glibc 2.24+ ARM64manylinux: glibc 2.28+ ARM64

cvxpy_base-1.8.1-cp314-cp314-macosx_10_15_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.14macOS 10.15+ x86-64

cvxpy_base-1.8.1-cp314-cp314-macosx_10_15_universal2.whl (1.7 MB view details)

Uploaded CPython 3.14macOS 10.15+ universal2 (ARM64, x86-64)

cvxpy_base-1.8.1-cp313-cp313-win_amd64.whl (1.3 MB view details)

Uploaded CPython 3.13Windows x86-64

cvxpy_base-1.8.1-cp313-cp313-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.24+ x86-64manylinux: glibc 2.28+ x86-64

cvxpy_base-1.8.1-cp313-cp313-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.24+ ARM64manylinux: glibc 2.28+ ARM64

cvxpy_base-1.8.1-cp313-cp313-macosx_10_13_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.13macOS 10.13+ x86-64

cvxpy_base-1.8.1-cp313-cp313-macosx_10_13_universal2.whl (1.7 MB view details)

Uploaded CPython 3.13macOS 10.13+ universal2 (ARM64, x86-64)

cvxpy_base-1.8.1-cp312-cp312-win_amd64.whl (1.3 MB view details)

Uploaded CPython 3.12Windows x86-64

cvxpy_base-1.8.1-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.24+ x86-64manylinux: glibc 2.28+ x86-64

cvxpy_base-1.8.1-cp312-cp312-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.24+ ARM64manylinux: glibc 2.28+ ARM64

cvxpy_base-1.8.1-cp312-cp312-macosx_10_13_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.12macOS 10.13+ x86-64

cvxpy_base-1.8.1-cp312-cp312-macosx_10_13_universal2.whl (1.7 MB view details)

Uploaded CPython 3.12macOS 10.13+ universal2 (ARM64, x86-64)

cvxpy_base-1.8.1-cp311-cp311-win_amd64.whl (1.3 MB view details)

Uploaded CPython 3.11Windows x86-64

cvxpy_base-1.8.1-cp311-cp311-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.24+ x86-64manylinux: glibc 2.28+ x86-64

cvxpy_base-1.8.1-cp311-cp311-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.24+ ARM64manylinux: glibc 2.28+ ARM64

cvxpy_base-1.8.1-cp311-cp311-macosx_10_9_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.11macOS 10.9+ x86-64

cvxpy_base-1.8.1-cp311-cp311-macosx_10_9_universal2.whl (1.7 MB view details)

Uploaded CPython 3.11macOS 10.9+ universal2 (ARM64, x86-64)

File details

Details for the file cvxpy_base-1.8.1.tar.gz.

File metadata

  • Download URL: cvxpy_base-1.8.1.tar.gz
  • Upload date:
  • Size: 1.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.12.12

File hashes

Hashes for cvxpy_base-1.8.1.tar.gz
Algorithm Hash digest
SHA256 a72d22d27fbc9a814705daba63635f3259f17d05c49115b2e229dffa723f2bb9
MD5 63e59775e0a198509e1e0a30e09b8b1e
BLAKE2b-256 529a8ae83e3992b636cbedd8cfb8682cd21ff1209ca571c6928d751950338491

See more details on using hashes here.

File details

Details for the file cvxpy_base-1.8.1-cp314-cp314t-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for cvxpy_base-1.8.1-cp314-cp314t-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 e478a4ab41c6b55b666a299f2c26079526f931168f7a368daad207827e783acc
MD5 935ec8369c4356d764070e06ab837354
BLAKE2b-256 e1aa08639acd46e006113cec0d61d8bb2353ac04036126c9adca7dc42c0869d3

See more details on using hashes here.

File details

Details for the file cvxpy_base-1.8.1-cp314-cp314t-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for cvxpy_base-1.8.1-cp314-cp314t-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 ddc77ca165a65d67afd5d274d789b1f3d05fc47dade1523fd5c17638ea5b72f6
MD5 f6e2f7b2f64b5f3ce3bfefa87e5a7f6d
BLAKE2b-256 d97d8a8044bbdeb364ef72cb0b624531389533e09e9c803e6feee995836f5e0f

See more details on using hashes here.

File details

Details for the file cvxpy_base-1.8.1-cp314-cp314t-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for cvxpy_base-1.8.1-cp314-cp314t-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 7da8824b666ad44dfb72f936b33feb54cb0f270731cb6f66c87bc2129b619d85
MD5 95d81f1b0c2bd8169f154058db9fe917
BLAKE2b-256 2ea19f2506d0ef035d4670b926f337bb155c8212fd01be26629c333678f1a5e9

See more details on using hashes here.

File details

Details for the file cvxpy_base-1.8.1-cp314-cp314t-macosx_10_15_universal2.whl.

File metadata

File hashes

Hashes for cvxpy_base-1.8.1-cp314-cp314t-macosx_10_15_universal2.whl
Algorithm Hash digest
SHA256 9dbd7f4268bbda34028c5f80bd5d39a7ccc8d8797a3bd75f00603827453a3d4d
MD5 2cf525021670004a57447a257b3aab6d
BLAKE2b-256 3cc916fbd9c78f898fbbb8970ba3541a756663d4c4c4b0f78102bb2906dc25cf

See more details on using hashes here.

File details

Details for the file cvxpy_base-1.8.1-cp314-cp314-win_amd64.whl.

File metadata

  • Download URL: cvxpy_base-1.8.1-cp314-cp314-win_amd64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.14, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.14.2

File hashes

Hashes for cvxpy_base-1.8.1-cp314-cp314-win_amd64.whl
Algorithm Hash digest
SHA256 0ce9a244d18196f42224e2d22f5233f42e1dcf9f50d64f5e023a127c07e1c388
MD5 80e40e6807c29375d4d5a8e5a024111d
BLAKE2b-256 8a124c52619c481c0920f5a461693d9c2787d95183a384494b546f29d31fc6b2

See more details on using hashes here.

File details

Details for the file cvxpy_base-1.8.1-cp314-cp314-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for cvxpy_base-1.8.1-cp314-cp314-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 59fa3a2fdd6e0a0649d5fc44874bdfcf4500524d541d5af7445ad39b7cb9aff4
MD5 a57865ba8de0be6b1b44ca763437f17d
BLAKE2b-256 3e55f5183664eaa374f16787dd8d90de66dd41789d2467e61702cad5ae9a05f9

See more details on using hashes here.

File details

Details for the file cvxpy_base-1.8.1-cp314-cp314-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for cvxpy_base-1.8.1-cp314-cp314-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 7f2c4d7a23d22b3e4b718effdf123c3f14bce3e0f81529f2724293e7de00760b
MD5 765b795b4ff1147d95f1782960ded500
BLAKE2b-256 41be3dc5d90b1226778aa64941b486c749008ef7567bd8dbad0ada6b7a1a06fb

See more details on using hashes here.

File details

Details for the file cvxpy_base-1.8.1-cp314-cp314-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for cvxpy_base-1.8.1-cp314-cp314-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 881dfd408b024d58b06bd8cb83581d13c1e0ce594efe5ba89e29d3f0be247833
MD5 180a2c7f416474059aae53d17d57ea87
BLAKE2b-256 6307638d3e8b1cf4670b891ea846f0152b2d7abb65bbadd2e76c23687344f690

See more details on using hashes here.

File details

Details for the file cvxpy_base-1.8.1-cp314-cp314-macosx_10_15_universal2.whl.

File metadata

File hashes

Hashes for cvxpy_base-1.8.1-cp314-cp314-macosx_10_15_universal2.whl
Algorithm Hash digest
SHA256 7b5b487d42da151c3750e4f65abf3040cbe5298b2cf0226358aa8663e150a24e
MD5 f18084f67a90be222842aeb1f467d6f7
BLAKE2b-256 fe92d5c91a3cd224a2fe37cfec19db9ef5be8152d978f841a81c94885eda0029

See more details on using hashes here.

File details

Details for the file cvxpy_base-1.8.1-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: cvxpy_base-1.8.1-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.13.11

File hashes

Hashes for cvxpy_base-1.8.1-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 4d8cfdde35e856d8d686b82082642f524e13232e76e9b3866481e0ef2b7f20e5
MD5 20911ae584734509edfc26716622cdde
BLAKE2b-256 5054f4e23063634a2343f57164242f455ccfc7ae881dc6a06e10b82c39c1df4b

See more details on using hashes here.

File details

Details for the file cvxpy_base-1.8.1-cp313-cp313-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for cvxpy_base-1.8.1-cp313-cp313-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 971736ccae2484f1aca0338eaff8da73b5f740ab0963406983b93874d8ce7283
MD5 13db4e0fd8b218ec15ef35445a1bb2ac
BLAKE2b-256 1a60b424b67ed8eacbb376170f09e4810a17490f77d073dfd7abe667b55bf94b

See more details on using hashes here.

File details

Details for the file cvxpy_base-1.8.1-cp313-cp313-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for cvxpy_base-1.8.1-cp313-cp313-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 41c4b6aad8cc5479168d6636587040b0b0c4222aa13ca16d3f7053339b04e454
MD5 c385e27ea52671b52d79cecf0efddfbc
BLAKE2b-256 a7991d88a0c00038e37f83268aa3bb6c46e84e29851a84d6d26778237751ac93

See more details on using hashes here.

File details

Details for the file cvxpy_base-1.8.1-cp313-cp313-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for cvxpy_base-1.8.1-cp313-cp313-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 0e5c97516951d6478ea792637496b326f6765ffca90f1e36c8e20744f0666baa
MD5 d4da118491e8be2e557a527483ba542d
BLAKE2b-256 190ce8e8192240cb197f7a29b26fb7396bcc59fc31ded0da2f848d3c2fd790d5

See more details on using hashes here.

File details

Details for the file cvxpy_base-1.8.1-cp313-cp313-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for cvxpy_base-1.8.1-cp313-cp313-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 edd911b19013686e9d3ec582ec8ada00eaa2248b0f8dc85713b0d5769c3e0b87
MD5 ca6e052ba64577f8933fec4a7e5e47ba
BLAKE2b-256 061d8f85a54059ec3740a2aab3ed8393bfb6f501bb573292fb341025d36a36ed

See more details on using hashes here.

File details

Details for the file cvxpy_base-1.8.1-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: cvxpy_base-1.8.1-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.12.10

File hashes

Hashes for cvxpy_base-1.8.1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 f9c965a790c9f0364989b2c21ddffe693560cef46d794ff798e0808361757069
MD5 7871faa5d1e060e4b91c603cd8bfa0c0
BLAKE2b-256 73ee4fb8d9400dc0db1c459338d3404eca7c113c6bb7054fb662ca4342722e51

See more details on using hashes here.

File details

Details for the file cvxpy_base-1.8.1-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for cvxpy_base-1.8.1-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 2a47b563c84520e823ddf9a2caf130290eb4fd96e921317f3454e23b7001eff0
MD5 be6085cc8354ba107ac8941608d7edd3
BLAKE2b-256 990f499ad93f12ba68a6cbc2f4947f79351fba7dc7ac9fc71b25ce34fcd37006

See more details on using hashes here.

File details

Details for the file cvxpy_base-1.8.1-cp312-cp312-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for cvxpy_base-1.8.1-cp312-cp312-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 1734af5b9f689cd61ebee3bdf0a904f2243f0744b5edb08201f638a25989593d
MD5 2e077c27f8fc1e57ededf0c9d0b16c52
BLAKE2b-256 bed896da3324f5b37056eb457f646ca2ccfe42f6107c488fe9206d3a20c46215

See more details on using hashes here.

File details

Details for the file cvxpy_base-1.8.1-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for cvxpy_base-1.8.1-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 1ba6db1ec9fea7cb784a03a97e231d2d8920d507f48fb4c9ceba7098b5a65925
MD5 f233daa11fc031db7ae5167568d1072b
BLAKE2b-256 b6ca663e55e3ffc1799c1839bac97a4c126f5119523bb8144b1605bd4451067a

See more details on using hashes here.

File details

Details for the file cvxpy_base-1.8.1-cp312-cp312-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for cvxpy_base-1.8.1-cp312-cp312-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 c3885e238efa23a3a886e2afc2ecfa0f8b71876613ff012bf13978cae5335b2c
MD5 9071ccfde64cb91dd32e8f6d2c351343
BLAKE2b-256 0506101023800ffdc383eeb710fc5ec0b516dae177f6c005f9fa65b45543950a

See more details on using hashes here.

File details

Details for the file cvxpy_base-1.8.1-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: cvxpy_base-1.8.1-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.11.9

File hashes

Hashes for cvxpy_base-1.8.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 5b51a3df9c8006dedf083bdde3867499e32c38d7d32cfd248bc4f206021899ad
MD5 ebb61c68b2fa006d541671e6665e58bd
BLAKE2b-256 2ea6b80498219f77426293234e21364d2fd1c93c86855007a022f5104a8c4249

See more details on using hashes here.

File details

Details for the file cvxpy_base-1.8.1-cp311-cp311-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for cvxpy_base-1.8.1-cp311-cp311-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 8beaf6b88cc533980af352c8ebc60ec99a3c04aa12b7da76a128475d486cb182
MD5 d8d5df06feca213703996a95155cf608
BLAKE2b-256 c7a42721d75e39ec555d59f3e0db23576dba3e3fb53c4b92ed15841681e553ab

See more details on using hashes here.

File details

Details for the file cvxpy_base-1.8.1-cp311-cp311-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for cvxpy_base-1.8.1-cp311-cp311-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 2ad15c8b84ca286c24bed15b6b7beb4eb971dfcadc59e9f80949e659496e00d7
MD5 19c75c754eeed8ae6a17b986ab1adebd
BLAKE2b-256 63de279051d8c241dc3175bb94a5d2297794427f6fefec640cd499490fafad4b

See more details on using hashes here.

File details

Details for the file cvxpy_base-1.8.1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for cvxpy_base-1.8.1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e46d828826e8feb0c816b29ef1b029a02679e67f8ebc952f0d56b4820fccfea8
MD5 6f47cf66b2a9aac3b6b1994fd202c543
BLAKE2b-256 d35774c39fb1447f4478d0cfcffe5bbf655c633bf0e71b84dc9e6454265f42d1

See more details on using hashes here.

File details

Details for the file cvxpy_base-1.8.1-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for cvxpy_base-1.8.1-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 c126dd7eb5ae14507fafa4ff8a08132254684d6b85d64ee92ca21d925eb9c69a
MD5 5c2a657a4da053100b9d538df00e247e
BLAKE2b-256 4c80aa0c2f62f57b3f5630739dd1884c0f971c981695e74744dca44cbd165aa1

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page