Skip to main content

A domain-specific language for modeling convex optimization problems in Python.

Project description

CVXPY

Build Status PyPI - downloads Conda - downloads Discord Coverage Benchmarks OpenSSF Scorecard

The CVXPY documentation is at cvxpy.org.

We are building a CVXPY community on Discord. Join the conversation! For issues and long-form discussions, use Github Issues and Github Discussions.

Contents

CVXPY is a Python-embedded modeling language for convex optimization problems. It allows you to express your problem in a natural way that follows the math, rather than in the restrictive standard form required by solvers.

For example, the following code solves a least-squares problem where the variable is constrained by lower and upper bounds:

import cvxpy as cp
import numpy

# Problem data.
m = 30
n = 20
numpy.random.seed(1)
A = numpy.random.randn(m, n)
b = numpy.random.randn(m)

# Construct the problem.
x = cp.Variable(n)
objective = cp.Minimize(cp.sum_squares(A @ x - b))
constraints = [0 <= x, x <= 1]
prob = cp.Problem(objective, constraints)

# The optimal objective is returned by prob.solve().
result = prob.solve()
# The optimal value for x is stored in x.value.
print(x.value)
# The optimal Lagrange multiplier for a constraint
# is stored in constraint.dual_value.
print(constraints[0].dual_value)

With CVXPY, you can model

  • convex optimization problems,
  • mixed-integer convex optimization problems,
  • geometric programs, and
  • quasiconvex programs.

CVXPY is not a solver. It relies upon the open source solvers Clarabel, SCS, OSQP and HiGHS. Additional solvers are available, but must be installed separately.

CVXPY began as a Stanford University research project. It is now developed by many people, across many institutions and countries.

Installation

CVXPY is available on PyPI, and can be installed with

pip install cvxpy

CVXPY can also be installed with conda, using

conda install -c conda-forge cvxpy

CVXPY has the following dependencies:

  • Python >= 3.11
  • Clarabel >= 0.5.0
  • OSQP >= 1.0.0
  • SCS >= 3.2.4.post1
  • NumPy >= 2.0.0
  • SciPy >= 1.13.0
  • highspy >= 1.11.0

For detailed instructions, see the installation guide.

Getting started

To get started with CVXPY, check out the following:

Issues

We encourage you to report issues using the Github tracker. We welcome all kinds of issues, especially those related to correctness, documentation, performance, and feature requests.

For basic usage questions (e.g., "Why isn't my problem DCP?"), please use StackOverflow instead.

Community

The CVXPY community consists of researchers, data scientists, software engineers, and students from all over the world. We welcome you to join us!

  • To chat with the CVXPY community in real-time, join us on Discord.
  • To have longer, in-depth discussions with the CVXPY community, use Github Discussions.
  • To share feature requests and bug reports, use Github Issues.

Please be respectful in your communications with the CVXPY community, and make sure to abide by our code of conduct.

Contributing

We appreciate all contributions. You don't need to be an expert in convex optimization to help out.

You should first install CVXPY from source. Here are some simple ways to start contributing immediately:

If you'd like to add a new example to our library, or implement a new feature, please get in touch with us first to make sure that your priorities align with ours.

Contributions should be submitted as pull requests. A member of the CVXPY development team will review the pull request and guide you through the contributing process.

Before starting work on your contribution, please read the contributing guide.

Team

CVXPY is a community project, built from the contributions of many researchers and engineers.

CVXPY is developed and maintained by Steven Diamond, Akshay Agrawal, Riley Murray, Philipp Schiele, Bartolomeo Stellato, and Parth Nobel, with many others contributing significantly. A non-exhaustive list of people who have shaped CVXPY over the years includes Stephen Boyd, Eric Chu, Robin Verschueren, Jaehyun Park, Enzo Busseti, AJ Friend, Judson Wilson, Chris Dembia, and William Zhang.

For more information about the team and our processes, see our governance document.

Citing

If you use CVXPY for academic work, we encourage you to cite our papers. If you use CVXPY in industry, we'd love to hear from you as well, on Discord or over email.

Project details


Release history Release notifications | RSS feed

This version

1.8.1

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cvxpy-1.8.1.tar.gz (1.8 MB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

cvxpy-1.8.1-cp314-cp314t-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.14tmanylinux: glibc 2.24+ x86-64manylinux: glibc 2.28+ x86-64

cvxpy-1.8.1-cp314-cp314t-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.14tmanylinux: glibc 2.24+ ARM64manylinux: glibc 2.28+ ARM64

cvxpy-1.8.1-cp314-cp314t-macosx_10_15_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.14tmacOS 10.15+ x86-64

cvxpy-1.8.1-cp314-cp314t-macosx_10_15_universal2.whl (1.7 MB view details)

Uploaded CPython 3.14tmacOS 10.15+ universal2 (ARM64, x86-64)

cvxpy-1.8.1-cp314-cp314-win_amd64.whl (1.3 MB view details)

Uploaded CPython 3.14Windows x86-64

cvxpy-1.8.1-cp314-cp314-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.14manylinux: glibc 2.24+ x86-64manylinux: glibc 2.28+ x86-64

cvxpy-1.8.1-cp314-cp314-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.14manylinux: glibc 2.24+ ARM64manylinux: glibc 2.28+ ARM64

cvxpy-1.8.1-cp314-cp314-macosx_10_15_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.14macOS 10.15+ x86-64

cvxpy-1.8.1-cp314-cp314-macosx_10_15_universal2.whl (1.7 MB view details)

Uploaded CPython 3.14macOS 10.15+ universal2 (ARM64, x86-64)

cvxpy-1.8.1-cp313-cp313-win_amd64.whl (1.3 MB view details)

Uploaded CPython 3.13Windows x86-64

cvxpy-1.8.1-cp313-cp313-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.24+ x86-64manylinux: glibc 2.28+ x86-64

cvxpy-1.8.1-cp313-cp313-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.24+ ARM64manylinux: glibc 2.28+ ARM64

cvxpy-1.8.1-cp313-cp313-macosx_10_13_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.13macOS 10.13+ x86-64

cvxpy-1.8.1-cp313-cp313-macosx_10_13_universal2.whl (1.7 MB view details)

Uploaded CPython 3.13macOS 10.13+ universal2 (ARM64, x86-64)

cvxpy-1.8.1-cp312-cp312-win_amd64.whl (1.3 MB view details)

Uploaded CPython 3.12Windows x86-64

cvxpy-1.8.1-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.24+ x86-64manylinux: glibc 2.28+ x86-64

cvxpy-1.8.1-cp312-cp312-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.24+ ARM64manylinux: glibc 2.28+ ARM64

cvxpy-1.8.1-cp312-cp312-macosx_10_13_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.12macOS 10.13+ x86-64

cvxpy-1.8.1-cp312-cp312-macosx_10_13_universal2.whl (1.7 MB view details)

Uploaded CPython 3.12macOS 10.13+ universal2 (ARM64, x86-64)

cvxpy-1.8.1-cp311-cp311-win_amd64.whl (1.3 MB view details)

Uploaded CPython 3.11Windows x86-64

cvxpy-1.8.1-cp311-cp311-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.24+ x86-64manylinux: glibc 2.28+ x86-64

cvxpy-1.8.1-cp311-cp311-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.24+ ARM64manylinux: glibc 2.28+ ARM64

cvxpy-1.8.1-cp311-cp311-macosx_10_9_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.11macOS 10.9+ x86-64

cvxpy-1.8.1-cp311-cp311-macosx_10_9_universal2.whl (1.7 MB view details)

Uploaded CPython 3.11macOS 10.9+ universal2 (ARM64, x86-64)

File details

Details for the file cvxpy-1.8.1.tar.gz.

File metadata

  • Download URL: cvxpy-1.8.1.tar.gz
  • Upload date:
  • Size: 1.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.12.12

File hashes

Hashes for cvxpy-1.8.1.tar.gz
Algorithm Hash digest
SHA256 3fbdb1f81be7237c58742b1618bb9f809eeacf6c131705e2540b87ecef9cf402
MD5 aeaea5c32519c6f4b1090afe8104c826
BLAKE2b-256 974b8863001697e08f435dc06a858633dfc27d94fc0a0da882b9bfdebd44d0b3

See more details on using hashes here.

File details

Details for the file cvxpy-1.8.1-cp314-cp314t-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for cvxpy-1.8.1-cp314-cp314t-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 f0097a669e9c3008de565f2d773ef57b5e2548c3ac45aad6f1920bf4a0e3c823
MD5 7aa21c82b56bcadd49d64a5a21cd2220
BLAKE2b-256 aac56e926c1670e714f5f367e66ca3af2ac63af4d4eedd85f5cb1e26d641653a

See more details on using hashes here.

File details

Details for the file cvxpy-1.8.1-cp314-cp314t-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for cvxpy-1.8.1-cp314-cp314t-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 38ba6e8153c86dd8bf950accaf115f83b57a1d7130af81aedab81e112fd24f58
MD5 5be63ba9142f4eeedf490d2a1a3ffc70
BLAKE2b-256 5df699289c05744f9937c40cbe4861378bfa817c0b04d9c4fb49b4452349c409

See more details on using hashes here.

File details

Details for the file cvxpy-1.8.1-cp314-cp314t-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for cvxpy-1.8.1-cp314-cp314t-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 8d6664df446dc67024b1eed713f91327b642fab7dd59c1737e0b1c0787bdea34
MD5 6ecf66b5ead8dbf1be2b378740d51c98
BLAKE2b-256 e651e967e5893e3448c645fe27493fb02f9b6b1ae60cdadb510a29e06e523c84

See more details on using hashes here.

File details

Details for the file cvxpy-1.8.1-cp314-cp314t-macosx_10_15_universal2.whl.

File metadata

File hashes

Hashes for cvxpy-1.8.1-cp314-cp314t-macosx_10_15_universal2.whl
Algorithm Hash digest
SHA256 0078446f0bb014f2c673d5a73fb06c08d2e000ab80e15bc43880ce8eddd0c586
MD5 ca3864ae0e6cae4192005094c8801085
BLAKE2b-256 f18deecca26ff52e01af93867c900167bebec1374e9bf321e755e6b2beae85fe

See more details on using hashes here.

File details

Details for the file cvxpy-1.8.1-cp314-cp314-win_amd64.whl.

File metadata

  • Download URL: cvxpy-1.8.1-cp314-cp314-win_amd64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.14, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.14.2

File hashes

Hashes for cvxpy-1.8.1-cp314-cp314-win_amd64.whl
Algorithm Hash digest
SHA256 e904716c1d9a7e2a482e40c2cbbc431989cfb09a6c15a9f053b64b5f397d3803
MD5 31b581c903a08a88414073b82831f2be
BLAKE2b-256 eab1046ddfaf5a017f3cdce698de6e09438b152aebc387d2a80aa51b4b6204b4

See more details on using hashes here.

File details

Details for the file cvxpy-1.8.1-cp314-cp314-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for cvxpy-1.8.1-cp314-cp314-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 eb7677311a487f4fe4a5a12156619486f1c4531f745a9b9b2d0b759791b21911
MD5 bc7deac67f49cbe3f69ee8a159b6449e
BLAKE2b-256 a5b163e2c002730a5eab73744bd3f007ccb8e55ed215e7e36fbb88699d7a94f8

See more details on using hashes here.

File details

Details for the file cvxpy-1.8.1-cp314-cp314-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for cvxpy-1.8.1-cp314-cp314-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 ccce77781cdd0cd6e7222516dfeac1718860ee0ce2289ec07a27c74a70fae53c
MD5 28e7b6cadfdbe34251120678201fab75
BLAKE2b-256 6d6c726f89500ed2dc3b1455e535c52ba1755b13a4c9dcd0bd7a361540373334

See more details on using hashes here.

File details

Details for the file cvxpy-1.8.1-cp314-cp314-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for cvxpy-1.8.1-cp314-cp314-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 af13f000404467599a48f0b8a16f8a9fc003be804e65193d763e4f0af8d75ade
MD5 ef7fe01f20f1696213cc36b387554f09
BLAKE2b-256 1b74837d741e6553fddff62772f69db8562525e732ed4d0900085b9a9621b98f

See more details on using hashes here.

File details

Details for the file cvxpy-1.8.1-cp314-cp314-macosx_10_15_universal2.whl.

File metadata

File hashes

Hashes for cvxpy-1.8.1-cp314-cp314-macosx_10_15_universal2.whl
Algorithm Hash digest
SHA256 41fea926757ec08a8cbca06c3ac609f039281222b1e9b043b550ee7e833d8fe1
MD5 7dc7723d259b70e4eae26e70ec9c8e96
BLAKE2b-256 cb3b6afd69d4e3f5ff018496a5677cfd9fcfa463c3c3022d4ad4590fe5353f70

See more details on using hashes here.

File details

Details for the file cvxpy-1.8.1-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: cvxpy-1.8.1-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.13.11

File hashes

Hashes for cvxpy-1.8.1-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 e7d8348d743c6d49918ed9716e7f1d4fa7a181602c37bf6c169b83e3d5cb02ee
MD5 23ad7dbe353fe953cba6435843285ce5
BLAKE2b-256 f6103006d2c119e2de05ab985745a3dd451a2c90b0f8f0cc8fef2bc86c4a5dcb

See more details on using hashes here.

File details

Details for the file cvxpy-1.8.1-cp313-cp313-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for cvxpy-1.8.1-cp313-cp313-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 166dd712fa5766d76425d1b6687c9a6375b03bb3c79cd14dcdf86f07d53256e2
MD5 573f9c9fd26a653eed6ba6c56e0553c5
BLAKE2b-256 ffe2d8dce98fa12c5119f99a89461fc6eb24b15d3c2f4bffde8715ec78b5de2b

See more details on using hashes here.

File details

Details for the file cvxpy-1.8.1-cp313-cp313-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for cvxpy-1.8.1-cp313-cp313-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 8258e66e519035980732dd542d180bf180f5d1af35ddbd983d363836ea9c47a8
MD5 06a864ae8509d58f4aed78eb204ec0d7
BLAKE2b-256 4ea394f9deb149a56a184e9ff98f187a9aace484fbcf5f2078e101fcc20fa317

See more details on using hashes here.

File details

Details for the file cvxpy-1.8.1-cp313-cp313-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for cvxpy-1.8.1-cp313-cp313-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 e2597e898995dabf69a7052c39f234b484bf9f3721dbf616956cc6c09c01f54e
MD5 b074678a70558f6bf43ba77cfa347b93
BLAKE2b-256 1950002dadd7a712c9d3da86c7a6a11443430a20c01a7c1d84b57d8485b27b41

See more details on using hashes here.

File details

Details for the file cvxpy-1.8.1-cp313-cp313-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for cvxpy-1.8.1-cp313-cp313-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 5c54c766a8d274d6ad9105b04b574055fbab1032863d08c3d7027eb10671163f
MD5 fe820453e3a1d50732b57814d21f9e0f
BLAKE2b-256 f87d02c6c271bbc80eaf8160b87e1f221a328c62bafc6df41eb6554d65e2d47e

See more details on using hashes here.

File details

Details for the file cvxpy-1.8.1-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: cvxpy-1.8.1-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.12.10

File hashes

Hashes for cvxpy-1.8.1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 291be80b58240fea336dc0b72ac7d4c2ed484d8aefe7006ff0dfbfbff6ad56a9
MD5 171c9a3d749beec309f53864445cacc8
BLAKE2b-256 2c3f3c35a52c3219f544fecd2db40a8072a1f43dc4094de1d68dbd8fd589dae3

See more details on using hashes here.

File details

Details for the file cvxpy-1.8.1-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for cvxpy-1.8.1-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 96803ca7564aaf74821998093c37c92910732e137271474e7a1eaa0fbdb36bd2
MD5 cccc34628828cd9ca18413d5947ebd48
BLAKE2b-256 b255c6b5f0211deb58359b1a716216f6513fbd34c7fb9f5317c64fdc993cc998

See more details on using hashes here.

File details

Details for the file cvxpy-1.8.1-cp312-cp312-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for cvxpy-1.8.1-cp312-cp312-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 4c977b3e0ba8f38a5614f5da5c22c5cd82b99730cc56e13294e66e2e2a1494e7
MD5 84d2d6b1646e1479077925402f8f1b1a
BLAKE2b-256 bb9af6135bdffca3341c32baccc119a77d6b338ac9d90810cf79182bacf06dd6

See more details on using hashes here.

File details

Details for the file cvxpy-1.8.1-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for cvxpy-1.8.1-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 a27c3c291e753910600326c9046df67089c6930ab436835da06227452d9f9fb5
MD5 4a1ea032cae55ed2c8db7847698e0291
BLAKE2b-256 515257cd09de0f9a3a6586b2a8bb539511ed63b223c5ece4a7b903d73b3eb4f6

See more details on using hashes here.

File details

Details for the file cvxpy-1.8.1-cp312-cp312-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for cvxpy-1.8.1-cp312-cp312-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 4ad9cc028962247f5116d118136ac462023598f4d77ef5a27eecd584cf99eb5f
MD5 9394dde2c4e4f0a8bd0f5395ac7d5b9a
BLAKE2b-256 3f045b5b0115d433e1db0d1b8d0b0107e31c5c72b92986c957ffa3b04823191d

See more details on using hashes here.

File details

Details for the file cvxpy-1.8.1-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: cvxpy-1.8.1-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.11.9

File hashes

Hashes for cvxpy-1.8.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 295f20f4c5130f09ca1eb493a422f718f5726b2ebc0ba984bfebe96c9eb5fe30
MD5 7d603e03642cb10e8e2f6084d175b5a8
BLAKE2b-256 535eafddd09e19a36b5808d53446b255fd5b92b0122fbd8478a41556245c6d6f

See more details on using hashes here.

File details

Details for the file cvxpy-1.8.1-cp311-cp311-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for cvxpy-1.8.1-cp311-cp311-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 fbe4758ef9a07f9ecb05154c84d4097b9ebf3280ce3130e8cfdf4757bb7d229d
MD5 44fc45a61f86e059f7b119bf7efb6c30
BLAKE2b-256 57d6a4fe6d9ab9e4fec747ca631d48ea5e07f31411094851d1d0a901b68a5947

See more details on using hashes here.

File details

Details for the file cvxpy-1.8.1-cp311-cp311-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for cvxpy-1.8.1-cp311-cp311-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 636b02913b4366835cab791e8e28d8cf2a7fa2de44c0f590e899cfbc8644acd0
MD5 e6e6945edaece8bb998d246e08e2ca84
BLAKE2b-256 55d1aa59215f5ca0783d326050c3de13f7113311ad6d1d5d728f50d171682144

See more details on using hashes here.

File details

Details for the file cvxpy-1.8.1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for cvxpy-1.8.1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 165a9e2286d8ab5774f6a38ec2075383bbc01212d81d02ee05d1e8a0f219ed29
MD5 b2219bc71473a31b3a0b1ff2711fea3f
BLAKE2b-256 5907dee9a03b870ce49ba6be4356d26e7b013ab9e76f7856a800bc1dfe3c584b

See more details on using hashes here.

File details

Details for the file cvxpy-1.8.1-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for cvxpy-1.8.1-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 08c1ca0559835dca624d771a4343b59f0eea1c1113de71d7973cd1329841b437
MD5 5db907e626c4c51614ea1c4a490ba03b
BLAKE2b-256 a4c699d5e976d97057bf4c3179549b2858be9c1245ec3ab6446fbd5efff9f0cc

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page