Skip to main content

A domain-specific language for modeling convex optimization problems in Python.

Project description

CVXPY

Build Status PyPI - downloads Conda - downloads Coverage Benchmarks OpenSSF Scorecard

The CVXPY documentation is at cvxpy.org.

We are building a CVXPY community on Discord. Join the conversation! For issues and long-form discussions, use Github Issues and Github Discussions.

Contents

CVXPY is a Python-embedded modeling language for convex optimization problems. It allows you to express your problem in a natural way that follows the math, rather than in the restrictive standard form required by solvers.

For example, the following code solves a least-squares problem where the variable is constrained by lower and upper bounds:

import cvxpy as cp
import numpy

# Problem data.
m = 30
n = 20
numpy.random.seed(1)
A = numpy.random.randn(m, n)
b = numpy.random.randn(m)

# Construct the problem.
x = cp.Variable(n)
objective = cp.Minimize(cp.sum_squares(A @ x - b))
constraints = [0 <= x, x <= 1]
prob = cp.Problem(objective, constraints)

# The optimal objective is returned by prob.solve().
result = prob.solve()
# The optimal value for x is stored in x.value.
print(x.value)
# The optimal Lagrange multiplier for a constraint
# is stored in constraint.dual_value.
print(constraints[0].dual_value)

With CVXPY, you can model

  • convex optimization problems,
  • mixed-integer convex optimization problems,
  • geometric programs, and
  • quasiconvex programs.

CVXPY is not a solver. It relies upon the open source solvers Clarabel, SCS, and OSQP. Additional solvers are available, but must be installed separately.

CVXPY began as a Stanford University research project. It is now developed by many people, across many institutions and countries.

Installation

CVXPY is available on PyPI, and can be installed with

pip install cvxpy

CVXPY can also be installed with conda, using

conda install -c conda-forge cvxpy

CVXPY has the following dependencies:

  • Python >= 3.9
  • Clarabel >= 0.5.0
  • OSQP >= 0.6.2
  • SCS >= 3.2.4.post1
  • NumPy >= 1.21.6
  • SciPy >= 1.11.0

For detailed instructions, see the installation guide.

Getting started

To get started with CVXPY, check out the following:

Issues

We encourage you to report issues using the Github tracker. We welcome all kinds of issues, especially those related to correctness, documentation, performance, and feature requests.

For basic usage questions (e.g., "Why isn't my problem DCP?"), please use StackOverflow instead.

Community

The CVXPY community consists of researchers, data scientists, software engineers, and students from all over the world. We welcome you to join us!

  • To chat with the CVXPY community in real-time, join us on Discord.
  • To have longer, in-depth discussions with the CVXPY community, use Github Discussions.
  • To share feature requests and bug reports, use Github Issues.

Please be respectful in your communications with the CVXPY community, and make sure to abide by our code of conduct.

Contributing

We appreciate all contributions. You don't need to be an expert in convex optimization to help out.

You should first install CVXPY from source. Here are some simple ways to start contributing immediately:

If you'd like to add a new example to our library, or implement a new feature, please get in touch with us first to make sure that your priorities align with ours.

Contributions should be submitted as pull requests. A member of the CVXPY development team will review the pull request and guide you through the contributing process.

Before starting work on your contribution, please read the contributing guide.

Team

CVXPY is a community project, built from the contributions of many researchers and engineers.

CVXPY is developed and maintained by Steven Diamond, Akshay Agrawal, Riley Murray, Philipp Schiele, Bartolomeo Stellato, and Parth Nobel, with many others contributing significantly. A non-exhaustive list of people who have shaped CVXPY over the years includes Stephen Boyd, Eric Chu, Robin Verschueren, Jaehyun Park, Enzo Busseti, AJ Friend, Judson Wilson, Chris Dembia, and William Zhang.

For more information about the team and our processes, see our governance document.

Citing

If you use CVXPY for academic work, we encourage you to cite our papers. If you use CVXPY in industry, we'd love to hear from you as well, on Discord or over email.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cvxpy-1.6.6.tar.gz (1.6 MB view details)

Uploaded Source

Built Distributions

cvxpy-1.6.6-cp313-cp313-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.13Windows x86-64

cvxpy-1.6.6-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ x86-64

cvxpy-1.6.6-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.2 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ ARM64

cvxpy-1.6.6-cp313-cp313-macosx_10_13_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.13macOS 10.13+ x86-64

cvxpy-1.6.6-cp313-cp313-macosx_10_13_universal2.whl (1.5 MB view details)

Uploaded CPython 3.13macOS 10.13+ universal2 (ARM64, x86-64)

cvxpy-1.6.6-cp312-cp312-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.12Windows x86-64

cvxpy-1.6.6-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64

cvxpy-1.6.6-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.2 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ ARM64

cvxpy-1.6.6-cp312-cp312-macosx_10_13_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.12macOS 10.13+ x86-64

cvxpy-1.6.6-cp312-cp312-macosx_10_13_universal2.whl (1.5 MB view details)

Uploaded CPython 3.12macOS 10.13+ universal2 (ARM64, x86-64)

cvxpy-1.6.6-cp311-cp311-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.11Windows x86-64

cvxpy-1.6.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

cvxpy-1.6.6-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.2 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ ARM64

cvxpy-1.6.6-cp311-cp311-macosx_10_9_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.11macOS 10.9+ x86-64

cvxpy-1.6.6-cp311-cp311-macosx_10_9_universal2.whl (1.5 MB view details)

Uploaded CPython 3.11macOS 10.9+ universal2 (ARM64, x86-64)

cvxpy-1.6.6-cp310-cp310-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.10Windows x86-64

cvxpy-1.6.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

cvxpy-1.6.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.2 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ ARM64

cvxpy-1.6.6-cp310-cp310-macosx_10_9_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

cvxpy-1.6.6-cp310-cp310-macosx_10_9_universal2.whl (1.5 MB view details)

Uploaded CPython 3.10macOS 10.9+ universal2 (ARM64, x86-64)

cvxpy-1.6.6-cp39-cp39-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.9Windows x86-64

cvxpy-1.6.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

cvxpy-1.6.6-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.2 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ ARM64

cvxpy-1.6.6-cp39-cp39-macosx_10_9_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

cvxpy-1.6.6-cp39-cp39-macosx_10_9_universal2.whl (1.5 MB view details)

Uploaded CPython 3.9macOS 10.9+ universal2 (ARM64, x86-64)

File details

Details for the file cvxpy-1.6.6.tar.gz.

File metadata

  • Download URL: cvxpy-1.6.6.tar.gz
  • Upload date:
  • Size: 1.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.11

File hashes

Hashes for cvxpy-1.6.6.tar.gz
Algorithm Hash digest
SHA256 b424f2416b2d8935628e1291e97d532ec34ae046246fe9d2d2d69115ff1ba701
MD5 fedf6db4d32ba2d9cee7fcbf19386cb4
BLAKE2b-256 cfd9725c6a7593414ccae36c20987db9f28bf9088a7e2ffabc5e20c606195309

See more details on using hashes here.

File details

Details for the file cvxpy-1.6.6-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: cvxpy-1.6.6-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.3

File hashes

Hashes for cvxpy-1.6.6-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 7790b15365411778acbe25d23368f4e2776f28f44c7cbb6059101072e40fc028
MD5 2b33fd9dc7cdd6ad4cbbf02db83b8fdc
BLAKE2b-256 30d4cc050f44841418a5b67cb1b6c912021489c2fea9f96c9e25cef33544a74b

See more details on using hashes here.

File details

Details for the file cvxpy-1.6.6-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for cvxpy-1.6.6-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b461bd6cb9dd975ca5bf1ac86a3602036158eca7cdff8d824e8a7c30efe43f66
MD5 d83737e2f324f1886b11c933f0ffd493
BLAKE2b-256 9b697bee76a393457c7a8980270c03dc846cb142b4ea0a276f307c4bd8395f78

See more details on using hashes here.

File details

Details for the file cvxpy-1.6.6-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for cvxpy-1.6.6-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 091bf83fb4b7d58ea73380325f654239be6e7f556f2546c1cb767c41bf6815e3
MD5 6bbbce0840e4e3efc68603dd11422324
BLAKE2b-256 cdd2c72c59554d5ac2335a8b93e2f40217602d25742f5c6fe9b1c9a7510359a3

See more details on using hashes here.

File details

Details for the file cvxpy-1.6.6-cp313-cp313-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for cvxpy-1.6.6-cp313-cp313-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 23eb8dad835c425630a5d6b249c8685bd5d9038ad564cf6317e9ae259046b654
MD5 b371751ecf6954eed16d1f13a51f144a
BLAKE2b-256 c6b58008422948f54d28a77df4237f95fdb2eb72cd6cb57dce8b965b7128844c

See more details on using hashes here.

File details

Details for the file cvxpy-1.6.6-cp313-cp313-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for cvxpy-1.6.6-cp313-cp313-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 9d7aa7ecf5409459aaa5f39ec4889a472314d5790f478c093b6ebe733b4e4bd3
MD5 80314902e9de1f1e841290db70a740be
BLAKE2b-256 8dabab2e08cc4e65b92340ea6c8f070647f8adf3224a6316de487fdd47f42d4f

See more details on using hashes here.

File details

Details for the file cvxpy-1.6.6-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: cvxpy-1.6.6-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.10

File hashes

Hashes for cvxpy-1.6.6-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 0bc83872e7054434c9c242a1a154daacae4c57f2818c7edfefcbf69a0f628748
MD5 1f882380bee1b2065201344246c1352c
BLAKE2b-256 5e263a8055131273a7a1ee2fe71e315c3f6d436c57c33f557db13cf463cd97b8

See more details on using hashes here.

File details

Details for the file cvxpy-1.6.6-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for cvxpy-1.6.6-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 863535ba8d89806a8cfcd5cb7939aef7ec7c45a7109780af72ceda6090410887
MD5 42252c92a94599ba479087c173923f7c
BLAKE2b-256 9353fe6cb700e7bc78dac2d39060df48cc4f6b6c1a2fa3728c1e3049719d4e58

See more details on using hashes here.

File details

Details for the file cvxpy-1.6.6-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for cvxpy-1.6.6-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9bf2c311becaac48ea566692c53dba9bd39f0c4dd10534945191e39fd398e7ee
MD5 8e118a87db84226a4b58168e16a40411
BLAKE2b-256 81d62d697efafde3f16388439b7a1bcf4d6c3315a8b3a87f724e91c3f0be7573

See more details on using hashes here.

File details

Details for the file cvxpy-1.6.6-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for cvxpy-1.6.6-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 3b3e2b5db609434608c7f535ab483b055c3012ca02bb97b1cc76a97ef0ea9fef
MD5 98dc6a34b1bace8e95d1a3ec6a633794
BLAKE2b-256 72bd1fafb5b06e5d07598360ff2c947f2f0fba13439e8512e49e97f6ac865825

See more details on using hashes here.

File details

Details for the file cvxpy-1.6.6-cp312-cp312-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for cvxpy-1.6.6-cp312-cp312-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 73b82adb9a32ac75d98b52b0520dfcea846e5d5fe7d84c539b101043d51d532b
MD5 366f946b78e1eeaad68f46ee1e1ed145
BLAKE2b-256 fbeaf4c4c27ea426fe99deedc32be10829bb4b9993353710f64e7d8f36cb34fb

See more details on using hashes here.

File details

Details for the file cvxpy-1.6.6-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: cvxpy-1.6.6-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.11.9

File hashes

Hashes for cvxpy-1.6.6-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 200f969a171e7b7f6d682e51c9c595e7fec7014de551355a915aad16e9a824b2
MD5 c3c54a17adb8451f4c16559aa9385330
BLAKE2b-256 4284ec070a699d38e648fcef8599da7c031cd2fafc889bbe8a31500336805161

See more details on using hashes here.

File details

Details for the file cvxpy-1.6.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for cvxpy-1.6.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 eb67053bb3ffb886af17f198fe73f9f0c963865de47ed716af8728a1a2763507
MD5 d234758a14d47ee29391163a94a701a1
BLAKE2b-256 9967d45bd634b1755d50f3a333baa7e016227c2ac9a516da1fef4d08ae9417f5

See more details on using hashes here.

File details

Details for the file cvxpy-1.6.6-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for cvxpy-1.6.6-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ca252631ff112684a9f06fbedeb4517148646e5a26577077130d35c69a3e8a61
MD5 94262144608d37273fe47a92baf36442
BLAKE2b-256 18f5f37843f0f442ebdc2a895ae95251f42cdf0fefe01aca305d4225acb07a7b

See more details on using hashes here.

File details

Details for the file cvxpy-1.6.6-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for cvxpy-1.6.6-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0ad3abd3dabe5ae5d4d88b53d62d13d53c3515dbbd4ffb3348df91eef6b23171
MD5 f3bb24502774f8584e54e24bffbe6e42
BLAKE2b-256 0612b825caff9d65b101e79efe10aef2ea2724077bf70b75475e03ca9028250c

See more details on using hashes here.

File details

Details for the file cvxpy-1.6.6-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for cvxpy-1.6.6-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 d9046f1481d0b518efe82c4c8fd29ad1e7878bd1c426a29a1d4b770e620dd12c
MD5 ac691ef5c14c04931095e8e67c2b11ea
BLAKE2b-256 e96259d0634be0ef33b46108d83e62847c5cb2dfa117915495d2b8271b999547

See more details on using hashes here.

File details

Details for the file cvxpy-1.6.6-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: cvxpy-1.6.6-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.10.11

File hashes

Hashes for cvxpy-1.6.6-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 5d2aecceeac9f5b9297c26ea0080a8de0da94f2660103c6b2c996f6900fb9dab
MD5 6717234ca9049f32a83130370a136af6
BLAKE2b-256 c2544e8aa7a5f2b535e104bfae87730d81ccd37e02bb9141943a09c2f28525e1

See more details on using hashes here.

File details

Details for the file cvxpy-1.6.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for cvxpy-1.6.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f0f3c6bd27f62036b5a23e24beab0491d2e1af330bafa2872484658323ed3ece
MD5 85f632da7c5324d7d2d2343dfd01f140
BLAKE2b-256 142d5cc0322b36e07e6fdbf9770c3ef4d6c5a0c1df9b9310356e2d9055bb447f

See more details on using hashes here.

File details

Details for the file cvxpy-1.6.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for cvxpy-1.6.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ed5a3b2da9c47eddad2113327ac81689524ebb4ba174ea1f52117921541fd705
MD5 9ef528773142d2e021d075b714ac1127
BLAKE2b-256 323c8813028cda4b3ca278465050373a8197c91c5cd1c506022e0f566d216c4c

See more details on using hashes here.

File details

Details for the file cvxpy-1.6.6-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for cvxpy-1.6.6-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 101fb9b433cc2e334d3596ad611fcc3e2fa5d484bb0c65eda9ee2d7213de05b2
MD5 0356823e1c68fde96fa9fcb82e34ac0f
BLAKE2b-256 d78b9511ab6f410eaffcc8ff9a0117a1bdc71d1a971d5eb6bce194d1fefe19df

See more details on using hashes here.

File details

Details for the file cvxpy-1.6.6-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for cvxpy-1.6.6-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 5a23a18a1b88b008996b3cb696b8b64c315c44bd875b449658784f8a0b70aa02
MD5 5824be7159c87ed80b483bc021fce9ad
BLAKE2b-256 b8822ece56226abbfbc6221c3b361c990e7c0bbc635e30234896762be21f28f7

See more details on using hashes here.

File details

Details for the file cvxpy-1.6.6-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: cvxpy-1.6.6-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.9.13

File hashes

Hashes for cvxpy-1.6.6-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 5d8a7a567823ea43b5e24f390bb298ebd905cfb3570b4feeed0bcb80815f1400
MD5 fde49c1c0b49e5cd4865b43974fe1369
BLAKE2b-256 dc36dc8305ea8fb5eb25227bf2273daa2d18c986c7ba8d4347c44314844a033d

See more details on using hashes here.

File details

Details for the file cvxpy-1.6.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for cvxpy-1.6.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 845bb27ad6d7c8069e1fa769b638a0f07dfb4cbaa2f1e92dbc3c4ef5eb6cdeab
MD5 c87d1a39accb3c1080dc2b1b07e75a52
BLAKE2b-256 5cc11c3f4a4883c681a13985d63ac9521a335c4e2067203f34f6435b75684edf

See more details on using hashes here.

File details

Details for the file cvxpy-1.6.6-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for cvxpy-1.6.6-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3d011ca756ea13632a739431a59b3a0d17e36e8dab280059763c09c3d615662f
MD5 ebad4a95474f3e4e4933fbb8bfcc8b03
BLAKE2b-256 9a49534936b15dac9c164c6a00ad81333a474c238711505542c403c0c0227ba5

See more details on using hashes here.

File details

Details for the file cvxpy-1.6.6-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for cvxpy-1.6.6-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 220711c4cef001804613eccdbe1d104ba2be705b47ba1f8dc073ebc542bc5ca5
MD5 76f51e29316c5b7d56b0aacb32979893
BLAKE2b-256 e0a803754e16cfde46f26b97989e620fc22ef3b18482692cceda0134c8a8b100

See more details on using hashes here.

File details

Details for the file cvxpy-1.6.6-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

  • Download URL: cvxpy-1.6.6-cp39-cp39-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.9, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.9.22

File hashes

Hashes for cvxpy-1.6.6-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 060e09cdc0cb7044ee8b4fd736168ecda86edcf64af3f39ab579f59a36336ba3
MD5 959e8fd7a489eb352d9c6c14b33c61d5
BLAKE2b-256 96a7316fc1f1af52090ef8bdd777fa9b04ef4ea41b393167dc7e33e81be6c653

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page