Skip to main content

Fast implementation of unique elements in an array - up to 30x faster than NumPy

Project description

Fast implementation of unique elements in an array - up to 30x faster than NumPy

pip install cythonunique

Tested against Windows / Python 3.11 / Anaconda

Cython (and a C/C++ compiler) must be installed to use the optimized Cython implementation.

import timeit
import numpy as np

from cythonunique import fast_unique


def generate_random_arrays(shape, dtype='float64', low=0, high=1):
    return np.random.uniform(low, high, size=shape).astype(dtype)


def fast_unique_ordered(a):
    return fast_unique(a, accept_not_ordered=False)


def fast_unique_not_ordered(a):
    return fast_unique(a, accept_not_ordered=True, uint64limit=4294967296)


size = 10000000
low = 0
high = 100000000
arras = [
    (size, 'float32', low, high),
    (size, 'float64', low, high),
    (size, np.uint8, low, high),
    (size, np.int8, low, high),
    (size, np.int16, low, high),
    (size, np.int32, low, high),
    (size, np.int64, low, high),
    (size, np.uint16, low, high),
    (size, np.uint32, low, high),
    (size, np.uint64, low, high),
]
reps = 5
print('Ordered --------------------------')

for a in arras:
    arr = generate_random_arrays(*a)
    s = """u=fast_unique_ordered(arr)"""
    t1 = timeit.timeit(s, globals=globals(), number=reps) / reps
    print('c++ ', t1)

    s = """u=np.unique(arr)"""
    t2 = timeit.timeit(s, globals=globals(), number=reps) / reps
    print('np ', t2)
    u = fast_unique_ordered(arr)
    q = np.unique(arr)
    print(np.all(u == q))
    print('-------------------------')

print('Unordered --------------------------') # Falls back to Ordered if dtype is float or np.min(a)<0
for a in arras:
    arr = generate_random_arrays(*a)
    s = """u=fast_unique_not_ordered(arr)"""
    t1 = timeit.timeit(s, globals=globals(), number=reps) / reps
    print('c++ ', t1)

    s = """u=np.unique(arr)"""
    t2 = timeit.timeit(s, globals=globals(), number=reps) / reps
    print('np ', t2)
    u = fast_unique_not_ordered(arr)
    q = np.unique(arr)
    print(np.all(np.sort(u) == q))
    print('-------------------------')

# Ordered --------------------------
# c++  0.10320082000107504
# np  0.13888095999718644
# True
# -------------------------
# c++  0.10645331999985501
# np  0.14625759999908042
# True
# -------------------------
# c++  0.03644101999816485
# np  0.0833885799976997
# True
# -------------------------
# c++  0.03784457999863662
# np  0.08405877999903169
# True
# -------------------------
# c++  0.03909369999892078
# np  0.09831685999815817
# True
# -------------------------
# c++  0.045269479998387395
# np  0.0970024200010812
# True
# -------------------------
# c++  0.06357002000149806
# np  0.12426133999833837
# True
# -------------------------
# c++  0.04224961999861989
# np  0.09802825999795459
# True
# -------------------------
# c++  0.046695440000621605
# np  0.10013775999832433
# True
# -------------------------
# c++  0.06854987999831792
# np  0.1277739599987399
# True
# -------------------------
# Unordered --------------------------
# c++  0.10427475999749732
# np  0.13533045999938623
# True
# -------------------------
# c++  0.1188001600006828
# np  0.14714665999927093
# True
# -------------------------
# c++  0.011010520000127144
# np  0.2836028199992143
# True
# -------------------------
# c++  0.03693970000022091
# np  0.08278198000043631
# True
# -------------------------
# c++  0.021734919998561964
# np  0.29412690000026487
# True
# -------------------------
# c++  0.02548580000002403
# np  0.29879269999801183
# True
# -------------------------
# c++  0.030021439999109133
# np  0.31899350000021515
# True
# -------------------------
# c++  0.012441499999840743
# np  0.28925163999956566
# True
# -------------------------
# c++  0.015460380000877193
# np  0.2964318199985428
# True
# -------------------------
# c++  0.026127819999237543
# np  0.31972092000069097
# True
# -------------------------

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cythonunique-0.11.tar.gz (23.4 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

cythonunique-0.11-py3-none-any.whl (23.2 kB view details)

Uploaded Python 3

File details

Details for the file cythonunique-0.11.tar.gz.

File metadata

  • Download URL: cythonunique-0.11.tar.gz
  • Upload date:
  • Size: 23.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for cythonunique-0.11.tar.gz
Algorithm Hash digest
SHA256 53a4414ffb0904739b6869c3ea1ef8ed7c8ed0d54647f99ed4af4a1958dba6c3
MD5 4d2afeb4d861dd5d251eeee163012610
BLAKE2b-256 63a9ed8e6c7eb3111865223240ebdea5532eefe74d99ada96690aed080a3a76f

See more details on using hashes here.

File details

Details for the file cythonunique-0.11-py3-none-any.whl.

File metadata

  • Download URL: cythonunique-0.11-py3-none-any.whl
  • Upload date:
  • Size: 23.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for cythonunique-0.11-py3-none-any.whl
Algorithm Hash digest
SHA256 7c5634ded1225c091c3a80eb49aee88391d22ad9d76c0b52c984210637679308
MD5 4a10cbb1edb730b25ca830aa70e76515
BLAKE2b-256 53847ed2c81c4a9c0d7c69033b5941a43f387c00ed795e3e4265a50859ddb773

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page