Skip to main content

fast vcf parsing with cython + htslib

Project description

cyvcf2
======

<!-- ghp-import -p docs/build/html/ -->
[![Docs](https://img.shields.io/badge/docs-latest-blue.svg)](http://brentp.github.io/cyvcf2/)

If you use cyvcf2, please cite the [paper](https://academic.oup.com/bioinformatics/article/2971439/cyvcf2)


Fast python **(2 and 3)** parsing of VCF and BCF including region-queries.

[![Build Status](https://travis-ci.org/brentp/cyvcf2.svg?branch=master)](https://travis-ci.org/brentp/cyvcf2)

cyvcf2 is a cython wrapper around [htslib](https://github.com/samtools/htslib) built for fast parsing of [Variant Call Format](https://en.m.wikipedia.org/wiki/Variant_Call_Format) (VCF) files.

Attributes like `variant.gt_ref_depths` return a numpy array directly so they are immediately ready for downstream use.
**note** that the array is backed by the underlying C data, so, once `variant` goes out of scope. The array will contain nonsense.
To persist a copy, use: `cpy = np.array(variant.gt_ref_depths)` instead of just `arr = variant.gt_ref_depths`.

Example
=======

The example below shows much of the use of cyvcf2.

```Python
from cyvcf2 import VCF

for variant in VCF('some.vcf.gz'): # or VCF('some.bcf')
variant.REF, variant.ALT # e.g. REF='A', ALT=['C', 'T']


variant.CHROM, variant.start, variant.end, variant.ID, \
variant.FILTER, variant.QUAL

# numpy arrays of specific things we pull from the sample fields.
# gt_types is array of 0,1,2,3==HOM_REF, HET, UNKNOWN, HOM_ALT
variant.gt_types, variant.gt_ref_depths, variant.gt_alt_depths # numpy arrays
variant.gt_phases, variant.gt_quals, variant.gt_bases # numpy array


## INFO Field.
## extract from the info field by it's name:
variant.INFO.get('DP') # int
variant.INFO.get('FS') # float
variant.INFO.get('AC') # float

# convert back to a string.
str(variant)


## sample info...

# Get a numpy array of the depth per sample:
dp = variant.format('DP')
# or of any other format field:
sb = variant.format('SB')
assert sb.shape == (n_samples, 4) # 4-values per

# to do a region-query:

vcf = VCF('some.vcf.gz')
for v in vcf('11:435345-556565'):
if v.INFO["AF"] > 0.1: continue
print(str(v))

```

Installation
============

## pip
```
pip install cyvcf2
```

## github (building htslib and cyvcf2 from source)

```
git clone --recursive https://github.com/brentp/cyvcf2
cd cyvcf2/htslib
autoheader
autoconf
./configure --enable-libcurl
make

cd ..
pip install -e .
```

Testing
=======

Tests can be run with:

```
python setup.py test
```

CLI
=======
Run with `cyvcf2 path_to_vcf`

```
$ cyvcf2 --help
Usage: cyvcf2 [OPTIONS] <vcf_file> or -

fast vcf parsing with cython + htslib

Options:
-c, --chrom TEXT Specify what chromosome to include.
-s, --start INTEGER Specify the start of region.
-e, --end INTEGER Specify the end of the region.
--include TEXT Specify what info field to include.
--exclude TEXT Specify what info field to exclude.
--loglevel [DEBUG|INFO|WARNING|ERROR|CRITICAL]
Set the level of log output. [default:
INFO]
--silent Skip printing of vcf.
--help Show this message and exit.
```


See Also
========

Pysam also [has a cython wrapper to htslib](https://github.com/pysam-developers/pysam/blob/master/pysam/cbcf.pyx) and one block of code here is taken directly from that library. But, the optimizations that we want for gemini are very specific so we have chosen to create a separate project.

Performance
===========

For the performance comparison in the paper, we used [thousand genomes chromosome 22](ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/ALL.chr22.phase3_shapeit2_mvncall_integrated_v5a.20130502.genotypes.vcf.gz)
With the full comparison runner [here](https://github.com/brentp/cyvcf2/blob/master/scripts/compare.sh).

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cyvcf2-0.10.3.tar.gz (1.1 MB view details)

Uploaded Source

File details

Details for the file cyvcf2-0.10.3.tar.gz.

File metadata

  • Download URL: cyvcf2-0.10.3.tar.gz
  • Upload date:
  • Size: 1.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: Python-urllib/3.7

File hashes

Hashes for cyvcf2-0.10.3.tar.gz
Algorithm Hash digest
SHA256 827b77baf3e8ef79cb7a22be9fd0b832cf1ec3bf4876457156cdfdf488eb776d
MD5 743d14fe8c06063f3aa109968fca7c55
BLAKE2b-256 025de0503429bfaa7161db8b5962cf4637de7e8cbac20b8f0e7309c0239a949e

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page