Skip to main content

Dafne - Deep Anatomical Federated Network

Project description

PyPI version PDF Documentation HTML Documentation

Dafne

Deep Anatomical Federated Network is a program for the segmentation of medical images. It relies on a server to provide deep learning models to aid the segmentation, and incremental learning is used to improve the performance. See https://www.dafne.network/ for documentation and user information.

Windows binary installation

Please install the Visual Studio Redistributable Package under windows: https://aka.ms/vs/16/release/vc_redist.x64.exe Then, run the provided installer

Mac binary installation

Install the Dafne App from the downloaded .dmg file as usual. Make sure to download the archive appropriate for your architecture (x86 or arm).

Linux binary installation

The Linux distribution is a self-contained executable file. Simply download it, make it executable, and run it.

pip installation

Dafne can also be installed with pip pip install dafne

Citing

If you are writing a scientific paper, and you used Dafne for your data evaluation, please cite the following paper:

Santini F, Wasserthal J, Agosti A, et al. Deep Anatomical Federated Network (Dafne): an open client/server framework for the continuous collaborative improvement of deep-learning-based medical image segmentation. 2023 doi: 10.48550/arXiv.2302.06352.

Notes for developers

dafne

Run: python dafne.py <path_to_dicom_img>

Notes for the DL models

Apply functions

The input of the apply function is:

dict({
    'image': np.array (2D image)
    'resolution': sequence with two elements (image resolution in mm)
    'split_laterality': True/False (indicates whether the ROIs should be split in L/R if applicable)
    'classification': str - The classification tag of the image (optional, to identify model variants)
})

The output of the classifier is a string. The output of the segmenters is:

dict({
    roi_name_1: np.array (2D mask),
    roi_name_2: ...
})

Incremental learn functions

The input of the incremental learn functions are:

training data: dict({
    'resolution': sequence (see above)
    'classification': str (see above)
    'image_list': list([
        - np.array (2D image)
        - np.array (2D image)
        - ...
    ])
})

training outputs: list([
    - dict({
        roi_name_1: np.array (2D mask)
        roi_name_2: ...
    })
    - dict...

Every entry in the training outputs list corresponds to an entry in the image_list inside the training data. So len(training_data['image_list']) == len(training_outputs).

Acknowledgments

Input/Output is based on DOSMA - GPLv3 license

This software includes the Segment Anything Model (SAM) - Apache 2.0 license

Other packages required for this project are listed in requirements.txt

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dafne-1.9a2.tar.gz (593.2 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

dafne-1.9a2-py3-none-any.whl (618.6 kB view details)

Uploaded Python 3

File details

Details for the file dafne-1.9a2.tar.gz.

File metadata

  • Download URL: dafne-1.9a2.tar.gz
  • Upload date:
  • Size: 593.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.12.4

File hashes

Hashes for dafne-1.9a2.tar.gz
Algorithm Hash digest
SHA256 269cb6b38d6b444d01275b7ab0d7250744ed8d32aa089cdc12fb1b8614733cd2
MD5 8492a9761de450a414e30faea66d0d92
BLAKE2b-256 492ac1ff91863055c081cd5235272b39cff2d7a78a2c6d0133385bd3e5bed3f2

See more details on using hashes here.

File details

Details for the file dafne-1.9a2-py3-none-any.whl.

File metadata

  • Download URL: dafne-1.9a2-py3-none-any.whl
  • Upload date:
  • Size: 618.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.12.4

File hashes

Hashes for dafne-1.9a2-py3-none-any.whl
Algorithm Hash digest
SHA256 d03199d6778f745753b3c33c2e032d4d427f5a0a1ba91ecc9ff02447f98187d3
MD5 6795b9572210d09a00e384fac3fb3043
BLAKE2b-256 ddf577a316dff2fcfdaca079bf511ddba87735c87b5e6ba327201f7812cb708a

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page