Skip to main content

Library and command line interface for

Project description


Official library to manage datasets along with V7 Darwin annotation platform.

Darwin-py can both be used from the command line and as a python library.

Main functions are (but not limited to):

  • Client authentication
  • Listing local and remote datasets
  • Create/remove datasets
  • Upload/download data to/from remote datasets
  • Direct integration with PyTorch dataloaders

Support tested for python 3.8.


pip install darwin-py

You can now type darwin in your terminal and access the command line interface.

If you wish to use the PyTorch bindings, then you can use the ml flag to install all the additional requirements

pip install darwin-py[ml]

To run test, first install the test extra package

pip install darwin-py[test]

Usage as a Command Line Interface (CLI)

Once installed, darwin is accessible as a command line tool. A useful way to navigate the CLI usage is through the help command -h/--help which will provide additional information for each command available.

Client Authentication

To perform remote operations on Darwin you first need to authenticate. This requires a team-specific API-key. If you do not already have a Darwin account, you can contact us and we can set one up for you.

To start the authentication process:

$ darwin authenticate
API key:
Make example-team the default team? [y/N] y
Datasets directory [~/.darwin/datasets]:
Authentication succeeded.

You will be then prompted to enter your API-key, whether you want to set the corresponding team as default and finally the desired location on the local file system for the datasets of that team. This process will create a configuration file at ~/.darwin/config.yaml. This file will be updated with future authentications for different teams.

Listing local and remote datasets

Lists a summary of local existing datasets

$ darwin dataset local
NAME            IMAGES     SYNC_DATE         SIZE
mydataset       112025     yesterday     159.2 GB

Lists a summary of remote datasets accessible by the current user.

$ darwin dataset remote
NAME                       IMAGES     PROGRESS
example-team/mydataset     112025        73.0%

Create/remove a dataset

To create an empty dataset remotely:

$ darwin dataset create test
Dataset 'test' (example-team/test) has been created.
Access at

The dataset will be created in the team you're authenticated for.

To delete the project on the server:

$ darwin dataset remove test
About to delete example-team/test on darwin.
Do you want to continue? [y/N] y

Upload/download data to/from a remote dataset

Uploads data to an existing remote project. It takes the dataset name and a single image (or directory) with images/videos to upload as parameters.

The -e/--exclude argument allows to indicate file extension/s to be ignored from the data_dir. e.g.: -e .jpg

For videos, the frame rate extraction rate can be specified by adding --fps <frame_rate>

Supported extensions:

  • Video files: [.mp4, .bpm, .mov formats].
  • Image files [.jpg, .jpeg, .png formats].
$ darwin dataset push test /path/to/folder/with/images
100%|████████████████████████| 2/2 [00:01<00:00,  1.27it/s]

Before a dataset can be downloaded, a release needs to be generated:

$ darwin dataset export test 0.1
Dataset test successfully exported to example-team/test:0.1

This version is immutable, if new images / annotations have been added you will have to create a new release to included them.

To list all available releases

$ darwin dataset releases test
NAME                           IMAGES     CLASSES                   EXPORT_DATE
example-team/test:0.1               4           0     2019-12-07 11:37:35+00:00

And to finally download a release.

$ darwin dataset pull test:0.1
Dataset example-team/test:0.1 downloaded at /directory/choosen/at/authentication/time.

Usage as a Python library

The framework is designed to be usable as a standalone python library. Usage can be inferred from looking at the operations performed in darwin/ A minimal example to download a dataset is provided below and a more extensive one can be found in

from darwin.client import Client

client = Client.local() # use the configuration in ~/.darwin/config.yaml
dataset = client.get_remote_dataset("example-team/test")
dataset.pull() # downloads annotations and images for the latest exported version

Follow this guide for how to integrate darwin datasets directly in PyTorch.

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for darwin-py, version 0.7.5
Filename, size File type Python version Upload date Hashes
Filename, size darwin-py-0.7.5.tar.gz (85.6 kB) File type Source Python version None Upload date Hashes View

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Huawei Huawei PSF Sponsor Microsoft Microsoft PSF Sponsor NVIDIA NVIDIA PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page