Skip to main content

Create Dash forms from pydantic objects

Project description

Dash pydantic form

This package allows users to quickly create forms with Plotly Dash based on pydantic models.

See the full docs at dash-pydantic-form docs.

Check out a full self-standing example app in usage.py.

Getting started

Install with pip

pip install dash-pydantic-form

Create a pydantic model you would like to display a form for.

Note: This package uses pydantic 2.

from datetime import date
from typing import Literal
from pydantic import BaseModel, Field

class Employee(BaseModel):
    first_name: str = Field(title="First name")
    last_name: str = Field(title="Last name")
    office: Literal["au", "uk", "us", "fr"] = Field(title="Office")
    joined: date = Field(title="Employment date")

Then you can get an auto-generated form with ModelForm, leveraging dash-mantine-components (version 0.14) for form inputs.

from dash_pydantic_form import ModelForm

# somewhere in your layout:
form = ModelForm(
    Employee,
    aio_id="employees",
    form_id="new_employee",
)

Simple form

You can also render a pre-filled form by passing an instance of the data model rather than the class

# NOTE: This could come from a database
bob = Employee(first_name="Bob", last_name="K", office="au", joined="2020-05-20")

form = ModelForm(
    bob,
    aio_id="employees",
    form_id="bob",
)

You can then retrieve the contents of the whole form at once in a callback as follows

from dash import Input, Output, callback

@callback(
    Output("some-output-id", "some-output-attribute"),
    Input(ModelForm.ids.main("employees", "new_employee"), "data"),
)
def use_form_data(form_data: dict):
    try:
        print(Employee(**form_data))
    except ValidationError as exc:
        print("Could not validate form data:")
        print(exc.errors())
    return # ...

Customising inputs

The ModelForm will automaticlly pick which input type to use based on the type annotation for the model field. However, you can customise how each field input is rendered, and or pass additional props to the DMC component.

from dash_pydantic_form import ModelfForm, fields

form = ModelForm(
    Employee,
    aio_id="employees",
    form_id="new_employee",
    fields_repr={
        # Change the default from a Select to Radio items
        # NOTE: `description` can be set on pydantic fields as well
        "office": fields.RadioItems(description="Wich country office?"),
        # Pass additional props to the default input field
        "joined": {"maxDate": "2024-01-01"},
    },
)

You can also customise inputs by adding arguments to the fields' json_schema_extra if you don't mind mixing data and presentation layers.

class Employee(BaseModel):
    first_name: str = Field(title="First name")
    last_name: str = Field(title="Last name")
    office: Literal["au", "uk", "us", "fr"] = Field(
        title="Office",
        description="Wich country office?",
        # Use repr_type to change the default field used
        json_schema_extra={"repr_type": "RadioItems"},
    )
    joined: date = Field(
        title="Employment date",
        # Use repr_kwargs to pass default keyword arguments to the field
        json_schema_extra={"repr_kwargs": {"maxDate": "2024-01-01"}},
    )

form = ModelForm(Employee, aio_id="employees", form_id="new_employee")

Note: You can currently skip the json_schema_extra=... and just pass repr_type=..., repr_kwargs=... in the field. However, the **extras keyword arguments are deprecated on pydantic's Field so using json_schema_extra is more future-proof.

List of current field inputs:

Based on DMC:

  • Checkbox
  • Checklist
  • Color
  • Date
  • Json
  • Month
  • MultiSelect
  • Number
  • Password
  • RadioItems
  • Range
  • Rating
  • SegmentedControl
  • Select
  • Slider
  • Switch
  • Tags
  • Textarea
  • Text
  • Time
  • Year

Custom:

  • Dict
  • Table
  • List
  • Markdown
  • Model
  • Path
  • Quantity
  • TransferList

Creating sections

There are 2 main avenues to create form sections:

1. Create a submodel in one of the model fields

class HRData(BaseModel):
    office: Literal["au", "uk", "us", "fr"] = Field(title="Office")
    joined: date = Field(title="Employment date")

class EmployeeNested(BaseModel):
    first_name: str = Field(title="First name")
    last_name: str = Field(title="Last name")
    hr_data: HRData = Field(title="HR data")

ModelForm will then recognise HRData as a pydantic model and use the fields.Model to render it, de facto creating a section.

Nested model

2. Pass sections information to ModelForm

from dash_pydantic_form import FormSection, ModelForm, Sections

form = ModelForm(
    Employee,
    aio_id="employees",
    form_id="new_employee",
    sections=Sections(
        sections=[
            FormSection(name="General", fields=["first_name", "last_name"], default_open=True),
            FormSection(name="HR data", fields=["office", "joined"], default_open=False),
        ],
        # 3 render values are available: accordion, tabs and steps
        render="tabs",
    ),
)

Form sections

List of nested models

Dash pydantic form also handles lists of nested models with the possibility to add/remove items from the list and edit each one.

Let's say we now want to record the employee's pets

1. List

This creates a list of sub-forms each of which can take similar arguments as a ModelForm (fields_repr, sections).

class Pet(BaseModel):
    name: str = Field(title="Name")
    species: Literal["cat", "dog"] = Field(title="Species")
    age: int = Field(title="Age")

class Employee(BaseModel):
    first_name: str = Field(title="First name")
    last_name: str = Field(title="Last name")
    pets: list[Pet] = Field(title="Pets", default_factory=list)

form = ModelForm(
    Employee,
    aio_id="employees",
    form_id="new_employee",
    fields_repr={
        "pets": fields.List(
            fields_repr={
                "species": {"options_labels": {"cat": "Cat", "dog": "Dog"}}
            },
            # 3 render_type options: accordion, list or modal
            render_type="accordion",
        )
    },
)

List

2. Table

You can also represent the list of sub-models as an ag-grid table with fields.Table.

form = ModelForm(
    Employee,
    aio_id="employees",
    form_id="new_employee",
    fields_repr={
        "pets": fields.Table(
            fields_repr={
                "species": {"options_labels": {"cat": "Cat", "dog": "Dog"}}
            },
        )
    },
)

Table

Make fields conditionnally visible

You can make field visibility depend on the value of other fields in the form. To do so, simply pass a visible argument to the field.

class Employee(BaseModel):
    first_name: str
    last_name: str
    only_bob: str | None = Field(
        title="Only for Bobs",
        description="What's your favourite thing about being a Bob?",
        default=None,
    )

form = ModelForm(
    Employee,
    aio_id="employees",
    form_id="new_employee",
    fields_repr={
        "only_bob": fields.Textarea(
            visible=("first_name", "==", "Bob"),
        )
    },
)

Conditionally visible field

visible accepts a boolean, a 3-tuple or list of 3-tuples with format: (field, operator, value). The available operators are:

  • "=="
  • "!="
  • "in"
  • "not in"
  • "array_contains"
  • "array_contains_any"

NOTE: The field in the 3-tuples is a ":" separated path relative to the current field's level of nesting. If you need to reference a field from a parent or the root use the special values _parent_ or _root_.

E.g., visible=("_root_:first_name", "==", "Bob")

Discriminated unions

Dash pydantic form supports Pydantic discriminated unions with str discriminator

class HomeOffice(BaseModel):
    """Home office model."""

    type: Literal["home_office"]
    has_workstation: bool = Field(title="Has workstation", description="Does the employee have a suitable workstation")


class WorkOffice(BaseModel):
    """Work office model."""

    type: Literal["work_office"]
    commute_time: int = Field(title="Commute time", description="Commute time in minutes", ge=0)

class Employee(BaseModel):
    name: str = Field(title="Name")
    work_location: HomeOffice | WorkOffice | None = Field("Work location", default=None, discriminator="type")

form = ModelForm(
    Employee,
    aio_id="employees",
    form_id="new_employee",
    fields_repr={
        "work_location": {
            "fields_repr": {
                "type": fields.RadioItems(
                    options_labels={"home_office": "Home", "work_office": "Work"}
                )
            },
        },
    }
)

Discriminated union

Creating custom fields

To be written

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dash_pydantic_form-0.13.1.tar.gz (72.1 kB view details)

Uploaded Source

Built Distribution

dash_pydantic_form-0.13.1-py3-none-any.whl (74.6 kB view details)

Uploaded Python 3

File details

Details for the file dash_pydantic_form-0.13.1.tar.gz.

File metadata

  • Download URL: dash_pydantic_form-0.13.1.tar.gz
  • Upload date:
  • Size: 72.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.12.8

File hashes

Hashes for dash_pydantic_form-0.13.1.tar.gz
Algorithm Hash digest
SHA256 621d362677a119a1831bafa9c9f94048338743ea5a51ffc4cca0ed7051c6d7bf
MD5 9dcfcf0d3846d998f28ae73442a7cb65
BLAKE2b-256 3d8a509d37416e278adbb7ac9dc16314c4e5073030dd3827d2c67e5ac0170cd0

See more details on using hashes here.

File details

Details for the file dash_pydantic_form-0.13.1-py3-none-any.whl.

File metadata

File hashes

Hashes for dash_pydantic_form-0.13.1-py3-none-any.whl
Algorithm Hash digest
SHA256 44d976f37767192dfb84bf71321e72f4dd3d7bd39cb9d99c4f6c434785541518
MD5 23603f1cd5968297a085261513dee91f
BLAKE2b-256 896658fd17590fb1daa6db85ca79bbbac466397f38ea275c65bb9823fe6b92ec

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page