Skip to main content

DashText is a Text Modal Data Library

Project description

DashText Python Library

DashText is a Python package for DashVector's sparse-dense (hybrid) semantic search which contains a series of text utilities and an integrated tool named SparseVectorEncoder.

Installation

To install the DashText Client, simply run:

pip install dashtext

QuickStart

SparseVector Encoding

It's easy to convert text corpus to sparse vectors in DashText with default models.

from dashtext import SparseVectorEncoder

# Initialize a Encoder Instance and Load a Default Model in DashText
encoder = SparseVectorEncoder.default('zh')

# Encode a new document (for upsert to DashVector)
document = "向量检索服务DashVector基于达摩院自研的高效向量引擎Proxima内核,提供具备水平拓展能力的云原生、全托管的向量检索服务。"
print(encoder.encode_documents(document))
# {380823393: 0.7262431704356519, 414191989: 0.7262431704356519, 565176162: 0.7262431704356519, 904594806: 0.7262431704356519, 1005505802: 0.7262431704356519, 1169440797: 0.8883757984694465, 1240922502: 0.7262431704356519, 1313971048: 0.7262431704356519, 1317077351: 0.7262431704356519, 1490140460: 0.7262431704356519, 1574737055: 0.7262431704356519, 1760434515: 0.7262431704356519, 2045788977: 0.8414146776926797, 2141666983: 0.7262431704356519, 2509543087: 0.7262431704356519, 3180265193: 0.7262431704356519, 3845702398: 0.7262431704356519, 4106887295: 0.7262431704356519}

# Encode a query (for search in DashVector)
query = "什么是向量检索服务?"
print(encoder.encode_queries(document))
# {380823393: 0.08361891359384604, 414191989: 0.09229860190522488, 565176162: 0.04535506923676476, 904594806: 0.020073288360284405, 1005505802: 0.027556881447714194, 1169440797: 0.04022365461249135, 1240922502: 0.050572420319144815, 1313971048: 0.01574978858878569, 1317077351: 0.03899710322573238, 1490140460: 0.03401309416846664, 1574737055: 0.03240084602715354, 1760434515: 0.11848476345398339, 2045788977: 0.09625917015244072, 2141666983: 0.11848476345398339, 2509543087: 0.05570020739487387, 3180265193: 0.023553249869916984, 3845702398: 0.05542717955003807, 4106887295: 0.05123100463915489}

SparseVector Parameters

The SparseVectorEncoder class is based on BM25 Algorithm, so it contains some parameters required for the BM25 algorithm and some text utilities parameters for text processing.

  • b: Document length normalization required by BM25 (default: 0.75).
  • k1: Term frequency saturation required by BM25 (default: 1.2).
  • tokenize_function: Tokenization process function, such as SentencePiece or GPTTokenizer in Transformers, outputs may by a string or integer array (default: Jieba, type: Callable[[str], List[str]]).
  • hash_function: Hash process function when need to convert text to number after tokenizing (default: mmh3 hash, type: Callable[[Union[str, int]], int]).
  • hash_bucket_function: Dividing process function when need to dividing hash values into finite buckets (default: None, type: Callable[[int], int]).
from dashtext import SparseVectorEncoder
from dashtext import TextTokenizer

tokenizer = TextTokenizer().from_pretrained("Jieba", stop_words=True)

encoder = SparseVectorEncoder(b=0.75, k1=1.2, tokenize_function=tokenizer.tokenize)

Reference

Encode Documents

encode_documents(texts: Union[str, List[str], List[int], List[List[int]]]) -> Union[Dict, List[Dict]]

Parameters Type Required Description
texts str
List[str]
List[int]
List[List[int]]
Yes str : single text
List[str]:mutiple texts
List[int]:hash representation of a single text
List[List[int]]:hash representation of mutiple texts

Example:

# single text
texts1 = "DashVector将其强大的向量管理、向量查询等多样化能力,通过简洁易用的SDK/API接口透出,方便被上层AI应用迅速集成"
result = encoder.encode_documents(texts1)

# mutiple texts
texts2 = ["DashVector将其强大的向量管理、向量查询等多样化能力,通过简洁易用的SDK/API接口透出,方便被上层AI应用迅速集成",
        "从而为包括大模型生态、多模态AI搜索、分子结构分析在内的多种应用场景,提供所需的高效向量检索能力"]     
result = encoder.encode_documents(texts2)

# hash representation of a single text
texts3 = [1218191817, 2673099881, 2982218203, 3422996809]
result = encoder.encode_documents(texts3)

# hash representation of mutiple texts
texts4 = [[1218191817, 2673099881, 2982218203, 3422996809], [2673099881, 2982218203, 3422996809, 771291085, 741580288]]
result = encoder.encode_documents(texts4)

# result example
# {59256732: 0.7340568742689919, 863271227: 0.7340568742689919, 904594806: 0.7340568742689919, 942054413: 0.7340568742689919, 1169440797: 0.8466352922575744, 1314384716: 0.7340568742689919, 1554119115: 0.7340568742689919, 1736403260: 0.7340568742689919, 2029341792: 0.7340568742689919, 2141666983: 0.7340568742689919, 2367386033: 0.7340568742689919, 2549501804: 0.7340568742689919, 3869223639: 0.7340568742689919, 4130523965: 0.7340568742689919, 4162843804: 0.7340568742689919, 4202556960: 0.7340568742689919}

Encode Queries

encode_queries(texts: Union[str, List[str], List[int], List[List[int]]]) -> Union[Dict, List[Dict]]
The input format is the same as the encode_documents method.

Example:

# single text
texts = "什么是向量检索服务?"
result = encoder.encode_queries(texts)

Train / Dump / Load DashText Model

Train

train(corpus: Union[str, List[str], List[int], List[List[int]]]) -> None

Parameters Type Required Description
corpus str
List[str]
List[int]
List[List[int]]
Yes str : single text
List[str]:mutiple texts
List[int]:hash representation of a single text
List[List[int]]:hash representation of mutiple texts

Example:

corpus = [
    "向量检索服务DashVector基于达摩院自研的高效向量引擎Proxima内核,提供具备水平拓展能力的云原生、全托管的向量检索服务",
    "DashVector将其强大的向量管理、向量查询等多样化能力,通过简洁易用的SDK/API接口透出,方便被上层AI应用迅速集成",
    "从而为包括大模型生态、多模态AI搜索、分子结构分析在内的多种应用场景,提供所需的高效向量检索能力",
    "简单灵活、开箱即用的SDK,使用极简代码即可实现向量管理",
    "自研向量相似性比对算法,快速高效稳定服务",
    "Schema-free设计,通过Schema实现任意条件下的组合过滤查询"
]

encoder.train(corpus)

# use dump method to check parameters
encoder.dump("./dump_paras.json")

Dump and Load

dump(path: str) -> None
load(path: str) -> None

Parameters Type Required Description
path str Yes Use the dump method to dump the model parameters as a JSON file to the specified path;
Use load method to load a model parameters from a JSON file path or URL

The input path can be either relative or absolute, but it should be specific to the file, Example:". /test_dump.json", URL starts with "http://" or "https://"

Example:

# dump model
encoder.dump("./model.json")

# load model from path
encoder.load("./model.json")

# load model from url
encoder.load("https://example.com/model.json")

Default DashText Models

If you want to use the default BM25 model of SparseVectorEncoder, you can call the default method.

default(name : str = 'zh') -> "SparseVectorEncoder"
Parameters Type Required Description
name str No Currently supports both Chinese and English default models,Chinese model name is 'zh'(default), English model name is 'en'.

Example:

# default method
encoder = dashtext.SparseVectorEncoder.default()

# using default model, you can directly encode documents and queries
encoder.encode_documents("DashVector将其强大的向量管理、向量查询等多样化能力,通过简洁易用的SDK/API接口透出,方便被上层AI应用迅速集成")
encoder.encode_queries("什么是向量检索服务?")

Extend Tokenizer

DashText comes with a built-in Jieba tokenizer that users can readily use (the default SparseVectorEncoder is trained with this Jieba tokenizer). However, in cases requires proprietary corpus, then a customized tokenizer is needed. To solve this problem, DashText offers two flexible options:

  • Option 1: Utilize the TextTokenizer.from_pretrained() method to create a customized built-in Jieba tokenizer. Users can effortlessly specify an original dictionary, a user-defined dictionary, and stopwords for quickstart. If the Jieba tokenizer meets the requirements, this option would be more suitable.
TextTokenizer.from_pretrained(cls, model_name : str = 'Jieba',
                              *inputs, **kwargs) -> "BaseTokenizer"
Parameters Type Required Description
model_name str Yes Currently only supports Jieba.
dict str No Dict path. Defaults to dict.txt.big.
user_dict str No Extra user dict path. Defaults to data/jieba/user_dict.txt(an empty file).
stop_words Union[bool, Dict[str, Any], List[str], Set[str]] No Stop words. Defaults to False.
True/False: True means using pre-defined stopwords, False means not using any stopwords.
Dict/List/Set: user defined stopwords. Type [Dict]/[List] will transfer to [Set].

|

  • Option 2: Use any customized Tokenizers by providing a callable function in the signature Callable[[str], List[str]]. This alternative grants users more freedom to tailor the tokenizer for specific needs. If there is a preferred tokenizer that has already fitted particular requirements, this option would allow users to seamlessly integrate the tokenizer directly into the workflow.

Combining Sparse and Dense Encodings for Hybrid Search in DashVector

combine_dense_and_sparse(dence_vector: Union[List[float], np.ndarray], sparse_vector: Dict[int, float], alpha: float) -> Tuple[Union[List[float], np.ndarray, Dict[int, float]]

Parameters Type Required Description
dense_vector Union[List[float], np.ndarray] Yes dense vector
sparse_vector Dict[int, float] Yes sparse vector generated by encode_documents or encode_query method
alpha float Yes alpha controls the computational weights of sparse and dense vectors. alpha=0.0 means sparse vector only, alpha=1.0 means dense vector only.

Example:

from dashtext import combine_dense_and_sparse

dense_vector = [0.02428389742874429,0.02036450577918233,0.00758973862139133,-0.060652585776971274,0.03321684423003758,-0.019009049500375488,0.015808212986566556,0.0037662904132509424,-0.0178332320055069]
sparse_vector = encoder.encode_documents("DashVector将其强大的向量管理、向量查询等多样化能力,通过简洁易用的SDK/API接口透出,方便被上层AI应用迅速集成")

# using convex combination to generate hybrid vector
scaled_dense_vector, scaled_sparse_vector = combine_dense_and_sparse(dense_vector, sparse_vector, 0.8)

# result example
# scaled_dense_vector: [0.019427117942995432, 0.016291604623345866, 0.006071790897113065, -0.04852206862157702, 0.026573475384030067, -0.01520723960030039, 0.012646570389253245, 0.003013032330600754, -0.014266585604405522]
# scaled_sparse_vector: {59256732: 0.14681137485379836, 863271227: 0.14681137485379836, 904594806: 0.14681137485379836, 942054413: 0.14681137485379836, 1169440797: 0.16932705845151483, 1314384716: 0.14681137485379836, 1554119115: 0.14681137485379836, 1736403260: 0.14681137485379836, 2029341792: 0.14681137485379836, 2141666983: 0.14681137485379836, 2367386033: 0.14681137485379836, 2549501804: 0.14681137485379836, 3869223639: 0.14681137485379836, 4130523965: 0.14681137485379836, 4162843804: 0.14681137485379836, 4202556960: 0.14681137485379836}

License

This project is licensed under the Apache License (Version 2.0).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

dashtext-0.0.7-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.2 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

dashtext-0.0.7-cp312-cp312-macosx_11_0_arm64.whl (6.6 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

dashtext-0.0.7-cp312-cp312-macosx_10_9_x86_64.whl (6.7 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

dashtext-0.0.7-cp311-cp311-win_amd64.whl (6.7 MB view details)

Uploaded CPython 3.11 Windows x86-64

dashtext-0.0.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

dashtext-0.0.7-cp311-cp311-macosx_11_0_arm64.whl (6.6 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

dashtext-0.0.7-cp311-cp311-macosx_10_9_x86_64.whl (6.6 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

dashtext-0.0.7-cp310-cp310-win_amd64.whl (6.7 MB view details)

Uploaded CPython 3.10 Windows x86-64

dashtext-0.0.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

dashtext-0.0.7-cp310-cp310-macosx_11_0_arm64.whl (6.6 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

dashtext-0.0.7-cp310-cp310-macosx_10_9_x86_64.whl (6.6 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

dashtext-0.0.7-cp39-cp39-win_amd64.whl (6.7 MB view details)

Uploaded CPython 3.9 Windows x86-64

dashtext-0.0.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

dashtext-0.0.7-cp39-cp39-macosx_11_0_arm64.whl (6.6 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

dashtext-0.0.7-cp39-cp39-macosx_10_9_x86_64.whl (6.6 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

dashtext-0.0.7-cp38-cp38-win_amd64.whl (6.7 MB view details)

Uploaded CPython 3.8 Windows x86-64

dashtext-0.0.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

dashtext-0.0.7-cp38-cp38-macosx_11_0_arm64.whl (6.7 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

dashtext-0.0.7-cp38-cp38-macosx_10_9_x86_64.whl (6.7 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

dashtext-0.0.7-cp37-cp37m-win_amd64.whl (6.7 MB view details)

Uploaded CPython 3.7m Windows x86-64

dashtext-0.0.7-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

dashtext-0.0.7-cp37-cp37m-macosx_10_9_x86_64.whl (6.7 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file dashtext-0.0.7-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for dashtext-0.0.7-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a3f2e9c47b245c839f8a0e1e3e8a3e4bbf322e0a25b2e8c83c7bb8b8079c55e8
MD5 bac266ab505ee2f848471fe987fee373
BLAKE2b-256 58a7da183f98de20c4e47ff508da30b2beb1d67cdaa010f74fac8bf371bf39f2

See more details on using hashes here.

File details

Details for the file dashtext-0.0.7-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for dashtext-0.0.7-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a13368d59a811566e6433f611081ca2c4fea5db8dabbf0a6eefef8fdd45043cd
MD5 8b68fe1cd0ca095b08ea83d22b2ffded
BLAKE2b-256 9f5dc8861780904dbb8bbeafbcb6b434c6ac7b7538743be870205f29512865c2

See more details on using hashes here.

File details

Details for the file dashtext-0.0.7-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for dashtext-0.0.7-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a457095d4982d74e3b5b8626988b94920269183eb0fbe53cac3f48a2f1f2d889
MD5 5cf09e55627613599072a9c6ea7ee40e
BLAKE2b-256 c5a98d86795b8cd90c72d0a1eb5d36e2957d226e86630b8e4c785bea90f80c71

See more details on using hashes here.

File details

Details for the file dashtext-0.0.7-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for dashtext-0.0.7-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 18341eb84b6839672c2117257366630bf5386c2dc37dfa5040513470f34d8c29
MD5 54b92e4338f388435238dc92acb0d278
BLAKE2b-256 4edec73eea4f4ef35f3dbbb9b451d880157bed702e03d1e9f228bd07fafa4914

See more details on using hashes here.

File details

Details for the file dashtext-0.0.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for dashtext-0.0.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7fd1bcd24a7d0dc6193a26c21b7bda9b0c09b4c0773839c865112630d3789e38
MD5 e42485c26b3551cf916c4e892882f1a7
BLAKE2b-256 1514122183f18464156eaa1a18e20ade9963cb37186affe88302d81c9a3f769c

See more details on using hashes here.

File details

Details for the file dashtext-0.0.7-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for dashtext-0.0.7-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 fe1d0a0bd09835d853aa6630cc89baeb04b687516f206c93c73a1cba59f5fdac
MD5 dd21b925b897cf21cb39596a8f659b80
BLAKE2b-256 5b1e5bea1282d3906a7aca91c9c90d63b9e5707c184f2baf75b024bce6e1b57a

See more details on using hashes here.

File details

Details for the file dashtext-0.0.7-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for dashtext-0.0.7-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 23da6945b5535ac0ecbfeddb3a962b0a4f113d573593798d1aca85efd3027fde
MD5 8f35fced41fe8e0df2fc4c5005b0f1e0
BLAKE2b-256 9a2b6ee807cd059bd34ac77ee09e47659a58c83855b8c1b487fdddc091051424

See more details on using hashes here.

File details

Details for the file dashtext-0.0.7-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for dashtext-0.0.7-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 3116de7d3b88cf94f9144bcdca39f681345e6b0dbd8159075dba80ba77eb3b01
MD5 c40ba8cb2e28c39a705532516fc70715
BLAKE2b-256 fdd63104f52cdc00ff8c8dba96ebd1627987e30aa6054f4ee1e8bd598e4eb9ef

See more details on using hashes here.

File details

Details for the file dashtext-0.0.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for dashtext-0.0.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c145813111830b35ad9bcbecd2788e4788152ef9967c208f452779f68999e5e6
MD5 3b7bf1596a90b2385dd9164990e62e74
BLAKE2b-256 8eb9f7c3e8f0c4460a023926bc4acd5cfd5e6309ad65ad046a13f380298f375d

See more details on using hashes here.

File details

Details for the file dashtext-0.0.7-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for dashtext-0.0.7-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7d1ea00201689704d37788dab2c50886a8954e8beba17d37f5f6ef5afc8a4992
MD5 27441d1a9d7ed54d3c1b4da0bec85a72
BLAKE2b-256 05ffa06aadf4dff4c50fbd81d5cfd783a66cc2a90401b39bfc8177b109fd6f38

See more details on using hashes here.

File details

Details for the file dashtext-0.0.7-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for dashtext-0.0.7-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 66800df8f6fbef3770794c8dab0b4211be15486d5b4af3164796fdafc15b5459
MD5 b1d4b9a2cb0bf5e1cfd98874862662f8
BLAKE2b-256 8dda8bb335e0f119a1abc3dedbe5e953a3e7d8d4ffda4a7f6d1411c97ebac841

See more details on using hashes here.

File details

Details for the file dashtext-0.0.7-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: dashtext-0.0.7-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 6.7 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.0

File hashes

Hashes for dashtext-0.0.7-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 33e43a9b969149fca41a10eab5e30279bd8aab8bef351985ffee7d5d9ea7837b
MD5 4fc625147027a192c9b69e0e4949ea3d
BLAKE2b-256 771e3ccfb07bc4ca0d8e4f5d73559a394523ecdbc100e4c51b111b3fc89321ee

See more details on using hashes here.

File details

Details for the file dashtext-0.0.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for dashtext-0.0.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 dd014eb10c4170efc7b64ff5de843bd14196a5ae1139ad1ab7ebdd0c16354181
MD5 fc924cb72e1a6dc8504d2692455a1183
BLAKE2b-256 4eec795941d8380361f6eea2f2a00c2548501b7c43cbd229a5eab6be5677b7fd

See more details on using hashes here.

File details

Details for the file dashtext-0.0.7-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for dashtext-0.0.7-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ae923bd671ad4f0ff18237b0020637699d1ed2f415e4e0cf8eeb29238c36bdbb
MD5 7744e31381baf17e50510d7f3ecac40b
BLAKE2b-256 14def807433e74d72125ef747daeaa3967915ed1a42973ed14cf5611f6799b1c

See more details on using hashes here.

File details

Details for the file dashtext-0.0.7-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for dashtext-0.0.7-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2348f71295ccbc53faf9f65fe81d80fc0c41d980e521bc9cc86298a7f471c1fd
MD5 47634fad0ad0fe3ae0ba4d7849b7cc4c
BLAKE2b-256 c90638f1a7c7039f0d52176fd18fa054120c11ccac6930fc24f1c7bb048284a0

See more details on using hashes here.

File details

Details for the file dashtext-0.0.7-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: dashtext-0.0.7-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 6.7 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.8.0

File hashes

Hashes for dashtext-0.0.7-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 92bcd61fbd6919e176f710e8f239aad4437b0e6223ed414a7f4e52da91cef69a
MD5 6afd34bb9dfad17eafe3f10864d3b6cd
BLAKE2b-256 acfffa51b205e5365e91960d1489d1b6272301f83ca391f47508267ce18393b9

See more details on using hashes here.

File details

Details for the file dashtext-0.0.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for dashtext-0.0.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 632735f7a89484fea49801333106db5ed474fc933830b32f2589477e31dc91b4
MD5 9e77adb4263a2472812ab3e8bab7aac1
BLAKE2b-256 f18fe26821006ce902515f7670b63b3d69668d1fc36a56a6563c45bba84417c0

See more details on using hashes here.

File details

Details for the file dashtext-0.0.7-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for dashtext-0.0.7-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 295482e8a510fa3159f9acb10d6fdf704d851172ac9777d548589dd570fcbfaa
MD5 6b5cf388462beb32f3e2f251544eb4b0
BLAKE2b-256 7343f015cc70631348d10cd887497e5c3a61b07dc8a95300d33ba2f71916bd7d

See more details on using hashes here.

File details

Details for the file dashtext-0.0.7-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for dashtext-0.0.7-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 28b02ecc8ee73f9001b1acb6ec739a219d3a84f3aa68172be8bc3de9bc3e28e1
MD5 d9cd3156e73d3614730121549b6109a7
BLAKE2b-256 da0795c52d99b4c51d9fc99989536dbcb3072d8c112e9c94d4c33b8ad4e57b54

See more details on using hashes here.

File details

Details for the file dashtext-0.0.7-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: dashtext-0.0.7-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 6.7 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.0

File hashes

Hashes for dashtext-0.0.7-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 5af33139fca357ecf6a3ebbb4089f63da908741b890181d6b3ca636a1530e6e2
MD5 60ea273b9d95a538a39a2085aef69f20
BLAKE2b-256 0ead6b5e6a17e751bf862c2944387d0fb24944dcb8398bfb9b369af47b55d906

See more details on using hashes here.

File details

Details for the file dashtext-0.0.7-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for dashtext-0.0.7-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0317d968befca6b4a4fbf13af8194e4fc134a375f210a8e27339864bd120d947
MD5 26fab702f3a690a31c883ce43b1cd883
BLAKE2b-256 4b3d68d82821dd6c24b1b856a7bdb1cfeeb991815c3e21b2cdf3bb8a0459774d

See more details on using hashes here.

File details

Details for the file dashtext-0.0.7-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for dashtext-0.0.7-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e4bd4bf2ebb238a1f1c1d9d93cb4b980ecf614b2b08afeb6dc7c199b6678ddc0
MD5 f180fb51b6b8d94349d158140324e1c0
BLAKE2b-256 629497cc1dbcc1cce9ca9abaa6c73fba00bde8cd073caf5c8e9f74450e2a77fb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page