Skip to main content

DashText is a Text Modal Data Library

Project description

DashText Python Library

DashText is a Python package for DashVector's sparse-dense (hybrid) semantic search which contains a series of text utilities and an integrated tool named SparseVectorEncoder.

Installation

To install the DashText Client, simply run:

pip install dashtext

QuickStart

SparseVector Encoding

It's easy to convert text corpus to sparse vectors in DashText with default models.

from dashtext import SparseVectorEncoder

# Initialize a Encoder Instance and Load a Default Model in DashText
encoder = SparseVectorEncoder.default('zh')

# Encode a new document (for upsert to DashVector)
document = "向量检索服务DashVector基于达摩院自研的高效向量引擎Proxima内核,提供具备水平拓展能力的云原生、全托管的向量检索服务。"
print(encoder.encode_documents(document))
# {380823393: 0.7262431704356519, 414191989: 0.7262431704356519, 565176162: 0.7262431704356519, 904594806: 0.7262431704356519, 1005505802: 0.7262431704356519, 1169440797: 0.8883757984694465, 1240922502: 0.7262431704356519, 1313971048: 0.7262431704356519, 1317077351: 0.7262431704356519, 1490140460: 0.7262431704356519, 1574737055: 0.7262431704356519, 1760434515: 0.7262431704356519, 2045788977: 0.8414146776926797, 2141666983: 0.7262431704356519, 2509543087: 0.7262431704356519, 3180265193: 0.7262431704356519, 3845702398: 0.7262431704356519, 4106887295: 0.7262431704356519}

# Encode a query (for search in DashVector)
query = "什么是向量检索服务?"
print(encoder.encode_queries(document))
# {380823393: 0.08361891359384604, 414191989: 0.09229860190522488, 565176162: 0.04535506923676476, 904594806: 0.020073288360284405, 1005505802: 0.027556881447714194, 1169440797: 0.04022365461249135, 1240922502: 0.050572420319144815, 1313971048: 0.01574978858878569, 1317077351: 0.03899710322573238, 1490140460: 0.03401309416846664, 1574737055: 0.03240084602715354, 1760434515: 0.11848476345398339, 2045788977: 0.09625917015244072, 2141666983: 0.11848476345398339, 2509543087: 0.05570020739487387, 3180265193: 0.023553249869916984, 3845702398: 0.05542717955003807, 4106887295: 0.05123100463915489}

SparseVector Parameters

The SparseVectorEncoder class is based on BM25 Algorithm, so it contains some parameters required for the BM25 algorithm and some text utilities parameters for text processing.

  • b: Document length normalization required by BM25 (default: 0.75).
  • k1: Term frequency saturation required by BM25 (default: 1.2).
  • tokenize_function: Tokenization process function, such as SentencePiece or GPTTokenizer in Transformers, outputs may by a string or integer array (default: Jieba, type: Callable[[str], List[str]]).
  • hash_function: Hash process function when need to convert text to number after tokenizing (default: mmh3 hash, type: Callable[[Union[str, int]], int]).
  • hash_bucket_function: Dividing process function when need to dividing hash values into finite buckets (default: None, type: Callable[[int], int]).
from dashtext import SparseVectorEncoder
from dashtext import TextTokenizer

tokenizer = TextTokenizer().from_pretrained("Jieba", stop_words=True)

encoder = SparseVectorEncoder(b=0.75, k1=1.2, tokenize_function=tokenizer.tokenize)

Reference

Encode Documents

encode_documents(texts: Union[str, List[str], List[int], List[List[int]]]) -> Union[Dict, List[Dict]]

Parameters Type Required Description
texts str
List[str]
List[int]
List[List[int]]
Yes str : single text
List[str]:mutiple texts
List[int]:hash representation of a single text
List[List[int]]:hash representation of mutiple texts

Example:

# single text
texts1 = "DashVector将其强大的向量管理、向量查询等多样化能力,通过简洁易用的SDK/API接口透出,方便被上层AI应用迅速集成"
result = encoder.encode_documents(texts1)

# mutiple texts
texts2 = ["DashVector将其强大的向量管理、向量查询等多样化能力,通过简洁易用的SDK/API接口透出,方便被上层AI应用迅速集成",
        "从而为包括大模型生态、多模态AI搜索、分子结构分析在内的多种应用场景,提供所需的高效向量检索能力"]     
result = encoder.encode_documents(texts2)

# hash representation of a single text
texts3 = [1218191817, 2673099881, 2982218203, 3422996809]
result = encoder.encode_documents(texts3)

# hash representation of mutiple texts
texts4 = [[1218191817, 2673099881, 2982218203, 3422996809], [2673099881, 2982218203, 3422996809, 771291085, 741580288]]
result = encoder.encode_documents(texts4)

# result example
# {59256732: 0.7340568742689919, 863271227: 0.7340568742689919, 904594806: 0.7340568742689919, 942054413: 0.7340568742689919, 1169440797: 0.8466352922575744, 1314384716: 0.7340568742689919, 1554119115: 0.7340568742689919, 1736403260: 0.7340568742689919, 2029341792: 0.7340568742689919, 2141666983: 0.7340568742689919, 2367386033: 0.7340568742689919, 2549501804: 0.7340568742689919, 3869223639: 0.7340568742689919, 4130523965: 0.7340568742689919, 4162843804: 0.7340568742689919, 4202556960: 0.7340568742689919}

Encode Queries

encode_queries(texts: Union[str, List[str], List[int], List[List[int]]]) -> Union[Dict, List[Dict]]
The input format is the same as the encode_documents method.

Example:

# single text
texts = "什么是向量检索服务?"
result = encoder.encode_queries(texts)

Train / Dump / Load DashText Model

Train

train(corpus: Union[str, List[str], List[int], List[List[int]]]) -> None

Parameters Type Required Description
corpus str
List[str]
List[int]
List[List[int]]
Yes str : single text
List[str]:mutiple texts
List[int]:hash representation of a single text
List[List[int]]:hash representation of mutiple texts

Example:

corpus = [
    "向量检索服务DashVector基于达摩院自研的高效向量引擎Proxima内核,提供具备水平拓展能力的云原生、全托管的向量检索服务",
    "DashVector将其强大的向量管理、向量查询等多样化能力,通过简洁易用的SDK/API接口透出,方便被上层AI应用迅速集成",
    "从而为包括大模型生态、多模态AI搜索、分子结构分析在内的多种应用场景,提供所需的高效向量检索能力",
    "简单灵活、开箱即用的SDK,使用极简代码即可实现向量管理",
    "自研向量相似性比对算法,快速高效稳定服务",
    "Schema-free设计,通过Schema实现任意条件下的组合过滤查询"
]

encoder.train(corpus)

# use dump method to check parameters
encoder.dump("./dump_paras.json")

Dump and Load

dump(path: str) -> None
load(path: str) -> None

Parameters Type Required Description
path str Yes Use the dump method to dump the model parameters as a JSON file to the specified path;
Use load method to load a model parameters from a JSON file path or URL

The input path can be either relative or absolute, but it should be specific to the file, Example:". /test_dump.json", URL starts with "http://" or "https://"

Example:

# dump model
encoder.dump("./model.json")

# load model from path
encoder.load("./model.json")

# load model from url
encoder.load("https://example.com/model.json")

Default DashText Models

If you want to use the default BM25 model of SparseVectorEncoder, you can call the default method.

default(name : str = 'zh') -> "SparseVectorEncoder"
Parameters Type Required Description
name str No Currently supports both Chinese and English default models,Chinese model name is 'zh'(default), English model name is 'en'.

Example:

# default method
encoder = dashtext.SparseVectorEncoder.default()

# using default model, you can directly encode documents and queries
encoder.encode_documents("DashVector将其强大的向量管理、向量查询等多样化能力,通过简洁易用的SDK/API接口透出,方便被上层AI应用迅速集成")
encoder.encode_queries("什么是向量检索服务?")

Extend Tokenizer

DashText comes with a built-in Jieba tokenizer that users can readily use (the default SparseVectorEncoder is trained with this Jieba tokenizer). However, in cases requires proprietary corpus, then a customized tokenizer is needed. To solve this problem, DashText offers two flexible options:

  • Option 1: Utilize the TextTokenizer.from_pretrained() method to create a customized built-in Jieba tokenizer. Users can effortlessly specify an original dictionary, a user-defined dictionary, and stopwords for quickstart. If the Jieba tokenizer meets the requirements, this option would be more suitable.
TextTokenizer.from_pretrained(cls, model_name : str = 'Jieba',
                              *inputs, **kwargs) -> "BaseTokenizer"
Parameters Type Required Description
model_name str Yes Currently only supports Jieba.
dict str No Dict path. Defaults to dict.txt.big.
user_dict str No Extra user dict path. Defaults to data/jieba/user_dict.txt(an empty file).
stop_words Union[bool, Dict[str, Any], List[str], Set[str]] No Stop words. Defaults to False.
True/False: True means using pre-defined stopwords, False means not using any stopwords.
Dict/List/Set: user defined stopwords. Type [Dict]/[List] will transfer to [Set].

|

  • Option 2: Use any customized Tokenizers by providing a callable function in the signature Callable[[str], List[str]]. This alternative grants users more freedom to tailor the tokenizer for specific needs. If there is a preferred tokenizer that has already fitted particular requirements, this option would allow users to seamlessly integrate the tokenizer directly into the workflow.

Combining Sparse and Dense Encodings for Hybrid Search in DashVector

combine_dense_and_sparse(dence_vector: Union[List[float], np.ndarray], sparse_vector: Dict[int, float], alpha: float) -> Tuple[Union[List[float], np.ndarray, Dict[int, float]]

Parameters Type Required Description
dense_vector Union[List[float], np.ndarray] Yes dense vector
sparse_vector Dict[int, float] Yes sparse vector generated by encode_documents or encode_query method
alpha float Yes alpha controls the computational weights of sparse and dense vectors. alpha=0.0 means sparse vector only, alpha=1.0 means dense vector only.

Example:

from dashtext import combine_dense_and_sparse

dense_vector = [0.02428389742874429,0.02036450577918233,0.00758973862139133,-0.060652585776971274,0.03321684423003758,-0.019009049500375488,0.015808212986566556,0.0037662904132509424,-0.0178332320055069]
sparse_vector = encoder.encode_documents("DashVector将其强大的向量管理、向量查询等多样化能力,通过简洁易用的SDK/API接口透出,方便被上层AI应用迅速集成")

# using convex combination to generate hybrid vector
scaled_dense_vector, scaled_sparse_vector = combine_dense_and_sparse(dense_vector, sparse_vector, 0.8)

# result example
# scaled_dense_vector: [0.019427117942995432, 0.016291604623345866, 0.006071790897113065, -0.04852206862157702, 0.026573475384030067, -0.01520723960030039, 0.012646570389253245, 0.003013032330600754, -0.014266585604405522]
# scaled_sparse_vector: {59256732: 0.14681137485379836, 863271227: 0.14681137485379836, 904594806: 0.14681137485379836, 942054413: 0.14681137485379836, 1169440797: 0.16932705845151483, 1314384716: 0.14681137485379836, 1554119115: 0.14681137485379836, 1736403260: 0.14681137485379836, 2029341792: 0.14681137485379836, 2141666983: 0.14681137485379836, 2367386033: 0.14681137485379836, 2549501804: 0.14681137485379836, 3869223639: 0.14681137485379836, 4130523965: 0.14681137485379836, 4162843804: 0.14681137485379836, 4202556960: 0.14681137485379836}

License

This project is licensed under the Apache License (Version 2.0).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

dashtext-0.0.6-cp312-cp312-win_amd64.whl (6.7 MB view details)

Uploaded CPython 3.12Windows x86-64

dashtext-0.0.6-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.2 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64

dashtext-0.0.6-cp312-cp312-macosx_11_0_arm64.whl (6.6 MB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

dashtext-0.0.6-cp312-cp312-macosx_10_9_x86_64.whl (6.6 MB view details)

Uploaded CPython 3.12macOS 10.9+ x86-64

dashtext-0.0.6-cp311-cp311-win_amd64.whl (6.7 MB view details)

Uploaded CPython 3.11Windows x86-64

dashtext-0.0.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.2 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

dashtext-0.0.6-cp311-cp311-macosx_11_0_arm64.whl (6.6 MB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

dashtext-0.0.6-cp311-cp311-macosx_10_9_x86_64.whl (6.6 MB view details)

Uploaded CPython 3.11macOS 10.9+ x86-64

dashtext-0.0.6-cp310-cp310-win_amd64.whl (6.7 MB view details)

Uploaded CPython 3.10Windows x86-64

dashtext-0.0.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.2 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

dashtext-0.0.6-cp310-cp310-macosx_11_0_arm64.whl (6.6 MB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

dashtext-0.0.6-cp310-cp310-macosx_10_9_x86_64.whl (6.7 MB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

dashtext-0.0.6-cp39-cp39-win_amd64.whl (6.7 MB view details)

Uploaded CPython 3.9Windows x86-64

dashtext-0.0.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.2 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

dashtext-0.0.6-cp39-cp39-macosx_11_0_arm64.whl (6.6 MB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

dashtext-0.0.6-cp39-cp39-macosx_10_9_x86_64.whl (6.6 MB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

dashtext-0.0.6-cp38-cp38-win_amd64.whl (6.7 MB view details)

Uploaded CPython 3.8Windows x86-64

dashtext-0.0.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.9 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

dashtext-0.0.6-cp38-cp38-macosx_11_0_arm64.whl (6.7 MB view details)

Uploaded CPython 3.8macOS 11.0+ ARM64

dashtext-0.0.6-cp38-cp38-macosx_10_9_x86_64.whl (6.7 MB view details)

Uploaded CPython 3.8macOS 10.9+ x86-64

dashtext-0.0.6-cp37-cp37m-win_amd64.whl (6.7 MB view details)

Uploaded CPython 3.7mWindows x86-64

dashtext-0.0.6-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.9 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ x86-64

dashtext-0.0.6-cp37-cp37m-macosx_10_9_x86_64.whl (6.7 MB view details)

Uploaded CPython 3.7mmacOS 10.9+ x86-64

File details

Details for the file dashtext-0.0.6-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: dashtext-0.0.6-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 6.7 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.0

File hashes

Hashes for dashtext-0.0.6-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 43618b47b4e35ea6a6307a0d036cf6eba6887f74d9ea2dda6c1d48e871c124be
MD5 a9e80b425d655e94506f5f53ae475d6d
BLAKE2b-256 abab98c3d4c614758a00c967eceffe7b6588001e6f7f24ba318df3b21285c68b

See more details on using hashes here.

File details

Details for the file dashtext-0.0.6-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for dashtext-0.0.6-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b562f55892b9e88dce047675ec5e2373cce939a858627388dd130a1ea5fcff5d
MD5 cbcb66d0094887cc5ecfc2ccb2af485d
BLAKE2b-256 835e6dda38e4525c1c8fc388a78b5e4aac8d1b3a1706d765c2cbcbfa1ef7cc5a

See more details on using hashes here.

File details

Details for the file dashtext-0.0.6-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for dashtext-0.0.6-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ff9c9f5996c599b45fa56736a61e7baeffa0336ad107b3f595286d600703d737
MD5 e760b3bab5891d236eaf089cc595fff1
BLAKE2b-256 dceacb100703c911a57977ddb4a18d41110d13e87561da6bab8b67ad7b86fd3b

See more details on using hashes here.

File details

Details for the file dashtext-0.0.6-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for dashtext-0.0.6-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2d784422e4a5ab3a2085b4899da508f9125c298866483c119d2de8a0ee1bfe88
MD5 e058bb0f64245baeef68ce0177d8d04d
BLAKE2b-256 0699cc6ac51fe9a4929e8b2fbeb43644a6adc15598247eff6fa929e8be39b1c1

See more details on using hashes here.

File details

Details for the file dashtext-0.0.6-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: dashtext-0.0.6-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 6.7 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.0

File hashes

Hashes for dashtext-0.0.6-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 fcd8c2fbecff542a5cedabfde548a2881e16facaf8525f7690bcc0dbb12b8612
MD5 f7528297468345493cb8a2ffcf0f8df5
BLAKE2b-256 f92b6f37b1c7539e9a287dc5910ef746c486a9f5b5bff454c04f73f3e618556f

See more details on using hashes here.

File details

Details for the file dashtext-0.0.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for dashtext-0.0.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f8a7514f31964aeb5ffaa20b7bc12e38cde0814b1f65f370e87e3865304f46cc
MD5 2f221e03db24b401e9ac69f42a5d2be9
BLAKE2b-256 1900a43ca18d1541d5d8eaed2aac5c78ee7f62b36b12beb289f046355780a983

See more details on using hashes here.

File details

Details for the file dashtext-0.0.6-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for dashtext-0.0.6-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 91ad370e6c63d6a480f34aacff4ce0a7f5e6814021242620dbf80f6315e053f1
MD5 1999c24706e324c985cbe209841a5ef1
BLAKE2b-256 dd4239f62e7badf64df2a733a35db41e8823481ccc0873dcff9b053cf5794efc

See more details on using hashes here.

File details

Details for the file dashtext-0.0.6-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for dashtext-0.0.6-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6e68e0fead5d0825665952a11f9fe459b17cf53ea3c0e1b1ea2294659e2e82b2
MD5 b67f91a2ccd70b677754e51780cf13cd
BLAKE2b-256 894efe7dbbc776767e25882b18d850162624828e774dc754b702c6fd3372417e

See more details on using hashes here.

File details

Details for the file dashtext-0.0.6-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: dashtext-0.0.6-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 6.7 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.10.13

File hashes

Hashes for dashtext-0.0.6-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 614edb1e719985352c71c6bd63d78de82801a58b76b9a935f5729f96651781b0
MD5 700249fc11d1ea0152012d478b9c9f70
BLAKE2b-256 30a5855c81ad10a3f259bd8432732efa273ad9dd3072189e0d962125d1003fb6

See more details on using hashes here.

File details

Details for the file dashtext-0.0.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for dashtext-0.0.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 89961946926cc8a82ae2883d64d7294df8dbd8a1af9eb958cb0cf09ecb765ab6
MD5 f2f9810199b463c425ca5cc44f1465f5
BLAKE2b-256 b4e476e729e829e787e8f4268449f97b2287b4ce88b810b0540c0108682353c8

See more details on using hashes here.

File details

Details for the file dashtext-0.0.6-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for dashtext-0.0.6-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2b0e392d91dbdebfd33a8c3b521fe14c37a7fc36e4d0879c2a40297d6f0638ba
MD5 9506e50fe52fa566e6cd6502adfc70f7
BLAKE2b-256 55ca8ad203a262a1c998f6cffd69e3ba9e5fcb9a2ea8e2a9a44f5fd416634048

See more details on using hashes here.

File details

Details for the file dashtext-0.0.6-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for dashtext-0.0.6-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ac86398cb3f5d6caa53f25c08897ffbe8e90c63ad17689a40e3f6887f830430f
MD5 10fc83be857a7880320c747e0584e3ee
BLAKE2b-256 d5114b61a61fbb539f076ec011669d4f990b89c9b4ef0870b3d4d47c5bf5504d

See more details on using hashes here.

File details

Details for the file dashtext-0.0.6-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: dashtext-0.0.6-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 6.7 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.5

File hashes

Hashes for dashtext-0.0.6-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 60e32e3825ff7cb9cae14f46a3ab0a4a8286f37e148da3a1c7b56440964bc750
MD5 8e9a902ec4114c6fa62550d58a3ead04
BLAKE2b-256 9a23f1e6dd25a376b9e441c4bf55c37f3678da4bcda302053f643baf20539a6d

See more details on using hashes here.

File details

Details for the file dashtext-0.0.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for dashtext-0.0.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 788b9d82b978a4cd2ca861bc02136d4bb014dfb36be4ff260baa801ffd42b1c2
MD5 3c85e4177b306f1abf4dd3312c9b0612
BLAKE2b-256 3ad46f6972c35f53f20674a465d8f898b3bcf7e14dd9dcadfacd41d4a511958e

See more details on using hashes here.

File details

Details for the file dashtext-0.0.6-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for dashtext-0.0.6-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4213abc7682a97fd50d2942dd2f0eb93bb9fffcd49d202530e34694821414711
MD5 68702a3d586b22c2dab20900f2f3778e
BLAKE2b-256 890598fd0df30f1b5d090cf96326df8d4dde4579b39b2b520140dd3916ddb195

See more details on using hashes here.

File details

Details for the file dashtext-0.0.6-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for dashtext-0.0.6-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 be7ce002404f32cb92b14497688e2f62618dce9f3140e054edec90580b1b6932
MD5 dfe428a2e528413848af079075d7d6be
BLAKE2b-256 54741db7843d4550cdb9c6f443862fe59614c55e8264392c89932e8077adb2c0

See more details on using hashes here.

File details

Details for the file dashtext-0.0.6-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: dashtext-0.0.6-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 6.7 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.8.0

File hashes

Hashes for dashtext-0.0.6-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 ac30acf6e5e334e2b7ab95e62af258320c9f738405adec9408746debed90371f
MD5 eb993448fa45ba7ceb472802c55f7b23
BLAKE2b-256 56549af462e05d9ee8407da3a5c0c3f7fd335fed446df3af5f04116e4ae11232

See more details on using hashes here.

File details

Details for the file dashtext-0.0.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for dashtext-0.0.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d5d3e4a6f69861578d21bdb856a0cb266b6d182e88617ac1356bd6a4db9eecf7
MD5 4535b088aabdd242538898c741a22e53
BLAKE2b-256 45a0ef30f12012ea5284fb9efe6449864d0fa7c2220fa9011ccfa8a2f1368ae9

See more details on using hashes here.

File details

Details for the file dashtext-0.0.6-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for dashtext-0.0.6-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5514ef99d83da787d92437f45c80e56e0a2a44fc4aac7188606892817b154ba1
MD5 a2b80895e2c4d0a335a038ac680354d8
BLAKE2b-256 a797536796f90ff61a4880d0d30320b58e64b57e819fa40c5b8fd30fca67982b

See more details on using hashes here.

File details

Details for the file dashtext-0.0.6-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for dashtext-0.0.6-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0f02a3cb4710a8bff70cd14451d342513e7cd6fc6819f440d05b49ec1b342ae3
MD5 f7b0f73b0f471785aefac95129a9b7c9
BLAKE2b-256 ab315e4a32f0ae37af953b162f5cde13f7c3400118e60d0f0b91d6b3f5dfeda5

See more details on using hashes here.

File details

Details for the file dashtext-0.0.6-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: dashtext-0.0.6-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 6.7 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.0

File hashes

Hashes for dashtext-0.0.6-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 e7c8c68a36628ffa9ab0f58763291fe589b9b28cb987f783805e5d7a7ee1fa00
MD5 506bfde139ecef18b190eda4a51b084f
BLAKE2b-256 f699f2ac04f0c845a33befbae268943db666cc58e94773ab86490ccdce6c7043

See more details on using hashes here.

File details

Details for the file dashtext-0.0.6-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for dashtext-0.0.6-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 23045a9b12cc3ac3d26de233dc3d57662f1cee9c80ccf9e38178dd170bf2757f
MD5 318bbe9d6c1170795d1217598e1c470e
BLAKE2b-256 9017b6052907f5d5ef1e70f85f0e7269002381e04dc1d0f2db05ca66713440ac

See more details on using hashes here.

File details

Details for the file dashtext-0.0.6-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for dashtext-0.0.6-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 fb4d6179221b6b01831cef57b8de351a5946bf01480faec1188c6bc33676e040
MD5 dca47a6a567534110e22505f420a09ce
BLAKE2b-256 71037ff7b1f59e5fd1631888b43e978a9f4a2ec11fcf605cd020b8d0054a04cf

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page