Skip to main content

Data helper package

Project description

data-toolz

This repository contains reusable python code for data projects.

The motivation for this project was to create a package which allows to abstract dataset read/write operations from

  • destination type (local, s3, <tbd...>) and
  • target file type (delimiter-separated values, jsonlines, parquet)

This would allow to write code easily transferable between local and cloud applications.

installation

pip install data-toolz

usage

datatoolz.filesystem.FileSystem class gives you an abstraction for accesing both local and remote object using the well know pythonic open() interface.

from datatoolz.filesystem import FileSystem

for fs_type in ("local", "s3"):
    fs = FileSystem(name=fs_type)

    # common pythonic interface for both local and remote file systems
    with fs.open("my-folder-or-bucket/my-file", mode="wt") as fo:
        fo.write("Hello World!")

datatoolz.io.DataIO class gives you a versatile Reader/Writer interface for handling of typical data files (jsonlines, dsv, parquet)

import pandas as pd
from datatoolz.io import DataIO

df = pd.DataFrame({"col1": [1, 2, 3], "col2": ["a", "b", "c"]})

dio = DataIO()  # defaults to "local" FileSystem

# write as parquet
dio.write(dataframe=df, path="my-file.parquet", filetype="parquet")
dio.read(path="my-file.parquet", filetype="parquet")

# write as gzip-compressed jsonlines
dio.write(dataframe=df, path="my-file.json.gz", filetype="jsonlines", gzip=True)
dio.read(path="my-file.json.gz", filetype="jsonlines", gzip=True)

# write as delimiter-separated-values in multiple partitions
dio.write(dataframe=df, path="my-file.tsv", filetype="dsv", sep="\t", partition_by=["col1"])
dio.read(path="my-file.tsv", filetype="dsv", sep="\t")

# write output in multiple chunks per partition
dio.write(dataframe=df, path="my-prefix", filetype="dsv", sep="\t", partition_by=["col1"], suffix=["chunk01.tsv", "chunk02.tsv"])
dio.read(path="my-prefix", filetype="dsv", sep="\t")

datatoolz.logging.JsonLogger is a wrapper logger for outputting JSON-structured logs

from datatoolz.logging import JsonLogger

logger = JsonLogger(name="my-custom-logger", env="dev")
logger.info(msg="what is my purpose?", meaning_of_life=42)
{"logger": {"application": "my-custom-logger", "environment": "dev"}, "level": "info", "timestamp": "2020-11-03 18:31:07.757534", "message": "what is my purpose?", "extra": {"meaning_of_life": 42}}

It can also be used to decorate functions and log their execution details

from datatoolz.logging import JsonLogger

logger = JsonLogger(name="my-custom-logger", env="dev")

@logger.decorate(msg="my-custom-log", duration=True, memory=True, my_value="my-value", output_length=lambda x: len(x))
def my_func(x, y):
    return x + y, x * y

print(my_func(42, 2))
{"logger": {"application": "my-custom-logger", "environment": "dev"}, "level": "info", "timestamp": "2021-03-24 18:10:47.054703", "message": "my-custom-log", "extra": {"function": "my_func", "memory": {"current": 432, "peak": 432}, "duration": 2.5980000000203063e-06, "my_value": "my-value", "output_length": 2}}
(44, 84)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

data-toolz-0.1.11.tar.gz (21.6 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

data_toolz-0.1.11-py3-none-any.whl (22.7 kB view details)

Uploaded Python 3

File details

Details for the file data-toolz-0.1.11.tar.gz.

File metadata

  • Download URL: data-toolz-0.1.11.tar.gz
  • Upload date:
  • Size: 21.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for data-toolz-0.1.11.tar.gz
Algorithm Hash digest
SHA256 e797f0debb194b1e8f4c82b6fd2d989370f0498eb16c47bb60077a2451faa333
MD5 416fef45cadcd1e48804de241f5fd44a
BLAKE2b-256 b4d96c6a0ba91e4695efe104ae13c3d2b15df0250c7f664f634a1595fea216db

See more details on using hashes here.

File details

Details for the file data_toolz-0.1.11-py3-none-any.whl.

File metadata

  • Download URL: data_toolz-0.1.11-py3-none-any.whl
  • Upload date:
  • Size: 22.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for data_toolz-0.1.11-py3-none-any.whl
Algorithm Hash digest
SHA256 53af2e4b9a0d8884a2ff705869ee7926acf73d70b6ca3aaed4f068cc15fed1c8
MD5 c5a6e40ff1e4a898e1575283cdb92ae0
BLAKE2b-256 941fe5e4291cee90a05d22640fe778ebcfe123dc8c9b4218f3ce03dbe3f9e873

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page