Skip to main content
Join the official 2019 Python Developers SurveyStart the survey!

Automated view of dataset

Project description

Description

Requirements

  • python >= 3.6
  • numpy >= 1.16
  • pandas >= 0.23
  • matplotlib >= 3.02
  • IPython >= 7.2.0

Module, provides the function view, which displays general information on the data:

  • Result of method info()
  • Result of method describe()
  • for numeric / categorical variables - The number of nulls in the data (amount and percentage for each column)
  • grid of histograms for numeric variables
  • Top-5 of the most frequent categorical variables (for each)
  • Split count statistic by category with less 5 unique values
  • matrix correlation

Parameters (function view):

  • d - table with data
  • only_numeric - True / False, default: True. True - information output only by numerical variables, False - information output by numerical and categorical variables.
  • full_stats - True / False, default: False. False - output information on numerical variables without interquartile range, data boundaries without outliers, True - complete output with IQR, min and max by IQR and amount of outliers.
  • histograms - True / False, default: True. True - output with building histograms for numerical variables, False - without building histograms

Top-5 elements of categorical variables

The postfix (_name / _count) is assigned to the name of the data column to create top-5 elements table:

  • _name - category name
  • _count - number of unique elements in this category. If there are less than 5 unique elements, then the values ​​in the _count field are filled -1

Count statistic of numbers variables split by some categorical variables

  • if number of unique elements in category variable less 5, then show count statistic

Correlation matrix

  • Correlation matrix with heatmap (pearson corr index)

Install

$ pip install data_view

Usage

$ python3

from data_view import *

d = pd.DataFrame(np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]), columns=['a', 'b', 'c'])

view(d, only_numeric=True, histograms=False)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for data-view, version 0.1.1
Filename, size File type Python version Upload date Hashes
Filename, size data_view-0.1.1-py3-none-any.whl (4.7 kB) File type Wheel Python version py3 Upload date Hashes View hashes
Filename, size data-view-0.1.1.tar.gz (4.6 kB) File type Source Python version None Upload date Hashes View hashes

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN SignalFx SignalFx Supporter DigiCert DigiCert EV certificate StatusPage StatusPage Status page