Skip to main content

Official Python client library for Databento

Project description

databento-python

test python pypi-version license code-style: black Slack

The official Python client library for Databento.

Key features include:

  • Fast, lightweight access to both live and historical data from multiple markets.
  • Multiple schemas such as MBO, MBP, top of book, OHLCV, last sale, and more.
  • Fully normalized, i.e. identical message schemas for both live and historical data, across multiple asset classes.
  • Provides mappings between different symbology systems, including smart symbology for futures rollovers.
  • Point-in-time instrument definitions, free of look-ahead bias and retroactive adjustments.
  • Reads and stores market data in an extremely efficient file format using Databento Binary Encoding.
  • Event-driven market replay, including at high-frequency order book granularity.
  • Support for batch download of flat files.
  • Support for pandas, CSV, and JSON.

Documentation

The best place to begin is with our Getting started guide.

You can find our full client API reference on the Historical Reference and Live Reference sections of our documentation. See also the Examples section for various tutorials and code samples.

Requirements

The library is fully compatible with distributions of Anaconda 2023.x and above. The minimum dependencies as found in the pyproject.toml are also listed below:

  • python = "^3.10"
  • aiohttp = "^3.8.3"
  • databento-dbn = "~0.48.0"
  • numpy = ">=1.23.5"
  • pandas = ">=1.5.3"
  • pip-system-certs = ">=4.0" (Windows only)
  • pyarrow = ">=13.0.0"
  • requests = ">=2.25.1"
  • zstandard = ">=0.21.0"

Installation

To install the latest stable version of the package from PyPI:

pip install -U databento

Usage

The library needs to be configured with an API key from your account. Sign up for free and you will automatically receive a set of API keys to start with. Each API key is a 32-character string starting with db-, that can be found on the API Keys page of your Databento user portal.

A simple Databento application looks like this:

import databento as db

client = db.Historical('YOUR_API_KEY')
data = client.timeseries.get_range(
    dataset='GLBX.MDP3',
    symbols='ES.FUT',
    stype_in='parent',
    start='2022-06-10T14:30',
    end='2022-06-10T14:40',
)

data.replay(callback=print)  # market replay, with `print` as event handler

Replace YOUR_API_KEY with an actual API key, then run this program.

This uses .replay() to access the entire block of data and dispatch each data event to an event handler. You can also use .to_df() or .to_ndarray() to cast the data into a Pandas DataFrame or numpy ndarray:

df = data.to_df()  # to DataFrame
array = data.to_ndarray()  # to ndarray

Note that the API key was also passed as a parameter, which is not recommended for production applications. Instead, you can leave out this parameter to pass your API key via the DATABENTO_API_KEY environment variable:

import databento as db

# Pass as parameter
client = db.Historical('YOUR_API_KEY')

# Or, pass as `DATABENTO_API_KEY` environment variable
client = db.Historical()

License

Distributed under the Apache 2.0 License.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

databento-0.70.0.tar.gz (70.1 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

databento-0.70.0-py3-none-any.whl (87.7 kB view details)

Uploaded Python 3

File details

Details for the file databento-0.70.0.tar.gz.

File metadata

  • Download URL: databento-0.70.0.tar.gz
  • Upload date:
  • Size: 70.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/2.3.1 CPython/3.12.12 Linux/6.11.0-1018-azure

File hashes

Hashes for databento-0.70.0.tar.gz
Algorithm Hash digest
SHA256 060a3edf818abebf8e09c8f1154ff28379663d7c493185e66e344069f4fc1679
MD5 f74bef678f0d5462b4f25159c320051f
BLAKE2b-256 6a92939c2905c767e3d29c613b5d98f021b619fdf79e3c480dbf6c66252207b4

See more details on using hashes here.

File details

Details for the file databento-0.70.0-py3-none-any.whl.

File metadata

  • Download URL: databento-0.70.0-py3-none-any.whl
  • Upload date:
  • Size: 87.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/2.3.1 CPython/3.12.12 Linux/6.11.0-1018-azure

File hashes

Hashes for databento-0.70.0-py3-none-any.whl
Algorithm Hash digest
SHA256 a5641c61e4466efca5184e99e6f672bac0e269135888bb22aba93c6906d977f3
MD5 6fb4a29504edc372077be6075feeadd5
BLAKE2b-256 23db7bc0933cd563f8fc536a5a236598bb1be2c7c3440acc17a8a5844ed05ea0

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page