Skip to main content

A smart data augmentation tool for AI developers.

Project description

📌 databoostr

databoostr is a Python package designed for AI developers to automatically analyze and augment datasets when data is scarce. It supports both image and text augmentation techniques, making it an essential tool for machine learning projects requiring data balancing.


🚀 Features

  • Automatic Data Analysis: Checks dataset distribution and identifies class imbalances.
  • Image Augmentation:
    • Rotation (90°, 180°, 270°)
    • Horizontal & Vertical Flipping
    • Brightness Adjustment
  • Text Augmentation:
    • Synonym Replacement
    • Random Word Deletion
  • Easy Integration: Simple API for applying augmentations automatically.

📦 Installation

pip install databoostr  # (Future release)

For now, clone the repository:

git clone https://github.com/your-username/databoostr.git
cd databoostr

🛠 Usage

1. Import and Initialize

from databoostr import DataBoostr

# Create an instance for image augmentation
augmentor = DataBoostr(dataset_path="path/to/images", mode="image")

2. Check Dataset Balance

balance = augmentor.check_data_balance()
print(balance)  # Output: {'class1': 120, 'class2': 80, 'class3': 50}

3. Apply Augmentation

For Images

augmentor.auto_augment()  # Applies augmentation and saves images in the same directory

For Text

augmentor_text = DataBoostr(dataset_path="path/to/text", mode="text")
augmentor_text.auto_augment()

📁 Project Structure

databoostr/
│── databoostr.py  # Main package module
│── utils.py  # Data analysis utilities
│── image_augment.py  # Image augmentation methods
│── text_augment.py  # Text augmentation methods
│── __init__.py

🎯 Roadmap

  • Add advanced augmentation techniques
  • Implement custom augmentation strategies
  • Publish on PyPI
  • Integrate with TensorFlow & PyTorch

🤝 Contributing

We welcome contributions! Feel free to fork the repository and submit a pull request.


📜 License

MIT License © 2025 Your Name


🌟 Show Your Support

If you like databoostr, consider starring ⭐ the repository!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

databooster-0.1.0.tar.gz (3.2 kB view details)

Uploaded Source

Built Distribution

databooster-0.1.0-py3-none-any.whl (3.1 kB view details)

Uploaded Python 3

File details

Details for the file databooster-0.1.0.tar.gz.

File metadata

  • Download URL: databooster-0.1.0.tar.gz
  • Upload date:
  • Size: 3.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.8

File hashes

Hashes for databooster-0.1.0.tar.gz
Algorithm Hash digest
SHA256 5e46442a8982a11319e5793a7822bc1fb4d430bc17d14446a81948d03b54f6d4
MD5 eab48848ecc13dd0b33427c12ff7b1a6
BLAKE2b-256 b7502eac61872f26fb62f12fc89cb7d84e47591d8c636827c712059f5674b308

See more details on using hashes here.

File details

Details for the file databooster-0.1.0-py3-none-any.whl.

File metadata

  • Download URL: databooster-0.1.0-py3-none-any.whl
  • Upload date:
  • Size: 3.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.8

File hashes

Hashes for databooster-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 40e0d68bae408e43cde199b30239b14ca991090be10dd38f33c56ffa66203e9f
MD5 187edeaf55e519c78eb0da13b83ee969
BLAKE2b-256 fde5cbc9bf8630eeb9f38935ada96e9eb7b0d7c7ec2b0e60b9ca25c3a84eee6b

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page