Skip to main content

Simple way to cast your data.

Project description

Datacast is a Python package that validates and converts your data.


Latest version released on PyPI Minimal Python version Test coverage Package license


Basic Usage

Install with pip:

pip install datacast

Define schema (can be any class with annotations) and use cast function.

from datacast import cast

class SimpleSchema:
    one: int
    two: str
    three: (lambda x: x ** 2)
    zero: (int, bool)
    four: float = 0.4
    five: None = 'five'

cast({'one': 1, 'two': 2, 'three': 3, 'zero': '0', 'five': 5}, SimpleSchema)
# {'one': 1, 'two': '2', 'three': 9, 'zero': False, 'four': 0.4, 'five': 5}

Rules are simple:

  • Params without annotations will be ignored.
  • Annotation is a caster, which will be called with the provided value, eg. bool(0).
  • Caster is any callable. Functions, lambdas, classes etc.
  • It also can be list or tuple (or another iterable). Then it acts like a chain of casters, eg. int('0') -> bool(0) -> False.
  • If there is no default value - param is required and will raise RequiredFieldError if not provided.
  • None in annotation means no casting.

Config

You can use Config class which acts like a schema AND stores result data.

from datacast import Config

class SimpleConfig(Config):
    spam: bool
    ham: None
    rabbit: float = None

config = SimpleConfig({'spam': 0, 'ham': 1})
assert config.spam == False
assert config.ham == 1
assert config.rabbit == None
assert config._asdict() == {'spam': False, 'ham': 1, 'rabbit': None}

Also there is EnvironConfig which loads input data from environment, casts strings to appropriate types and ignores extra vars.

from datacast import EnvironConfig

class SimpleEnvironConfig(EnvironConfig):
    SPAM: bool
    HAM: int
    RABBIT: str
    AUTOCAST: None
    NONE_VAL: None

os.environ['SPAM'] = '0'
os.environ['HAM'] = '1'
os.environ['RABBIT'] = '2'
os.environ['AUTOCAST'] = '3.5'
os.environ['NONE_VAL'] = 'null'
config = SimpleEnvironConfig()
assert config.SPAM == False
assert config.HAM == 1
assert config.RABBIT == '2'
assert config.AUTOCAST == 3.5
assert config.NONE_VAL == None

Note that you can actually not specify a caster and use None instead, it will still (most likely) make a cast.

Valid None strings:
 'none', 'null', 'nil'
Valid True strings:
 'true', 't', 'yes', 'y', 'on', '1'
Valid False strings:
 'false', 'f', 'no', 'n', 'off', '0', ''

Case doesn’t matter.

Settings

You can specify various settings and apply them in a bunch of different ways.

from datacast import apply_settings, Settings

@apply_settings(
    on_missing='store',
    missing_value=False
)
class SimpleSchema:
    ...

# OR

class SimpleSettings(Settings):
    on_missing = 'store'
    missing_value = False

@apply_settings(SimpleSettings)
class SimpleSchema:
    ...

# OR pass it to the cast function or Config creation

cast(input_data, SimpleSchema, settings=SimpleSettings)
cast(input_data, SimpleSchema, on_missing='store', missing_value=False)
Config(input_data, settings=SimpleSettings)
Config(input_data, on_missing='store', missing_value=False)

# OR use class attribute

class SimpleSchema:
    __settings__ = SimpleSettings
    # OR
    __settings__ = {'on_missing': 'store', 'missing_value': False}
    ...

List of settings

Name Default Description
on_extra 'ignore' What to do with values that absent from schema.
on_invalid 'raise' What to do when casting has failed.
on_missing 'raise' What to do when value is missing but required.
missing_value None What to store when value is missing.
store_callables False If False - execute callable value on store.
result_class dict Class which stores result data.
precasters () Prepend additional casters.
postcasters () Append additional casters.

Options for ‘on_extra’, ‘on_invalid’ and ‘on_missing’

ignore:Value will be ignored and not be stored in the result.
store:Value will be stored in the result as is. In case of on_missing it will store missing_value.
raise:Corresponding exception will be raised.
cast:Value will be casted with precasters, postcasters and then stored. Works only with on_extra!

With precasters and postcasters you will transform every caster in schema into a chain, which starts and/or ends with those casters.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Filename, size & hash SHA256 hash help File type Python version Upload date
datacast-0.3.2-py3-none-any.whl (9.2 kB) Copy SHA256 hash SHA256 Wheel py3
datacast-0.3.2.tar.gz (7.1 kB) Copy SHA256 hash SHA256 Source None

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN SignalFx SignalFx Supporter DigiCert DigiCert EV certificate StatusPage StatusPage Status page