Skip to main content

Dataclass Type Validator Library

Project description

dataclass-type-validator

The dataclass-type-validator is a type validation library for the properties of dataclasses.dataclass using Python type hint information.

Installation

pip install dataclass-type-validator or add dataclass-type-validator line to requirements.txt

A Simple Example

Explicitly calling dataclass_type_validator from within your dataclass

from dataclasses import dataclass
from typing import List
from dataclass_type_validator import dataclass_type_validator
from dataclass_type_validator import TypeValidationError

@dataclass()
class User:
    id: int
    name: str
    friend_ids: List[int]

    def __post_init__(self):
        dataclass_type_validator(self)


# Valid User
User(id=10, name='John Smith', friend_ids=[1, 2])
# => User(id=10, name='John Smith', friend_ids=[1, 2])

# Invalid User
try:
    User(id='a', name=['John', 'Smith'], friend_ids=['a'])
except TypeValidationError as e:
    print(e)
# => TypeValidationError: Dataclass Type Validation (errors = {
#   'id': "must be an instance of <class 'int'>, but received <class 'str'>",
#   'name': "must be an instance of <class 'str'>, but received <class 'list'>",
#   'friend_ids': 'must be an instance of typing.List[int], but there are some errors:
#       ["must be an instance of <class \'int\'>, but received <class \'str\'>"]'})

The same, but using the class decorator instead

from dataclasses import dataclass
from typing import List
from dataclass_type_validator import dataclass_validate
from dataclass_type_validator import TypeValidationError

@dataclass_validate
@dataclass()
class User:
    id: int
    name: str
    friend_ids: List[int]


# Valid User
User(id=10, name='John Smith', friend_ids=[1, 2])
# => User(id=10, name='John Smith', friend_ids=[1, 2])

# Invalid User
try:
    User(id='a', name=['John', 'Smith'], friend_ids=['a'])
except TypeValidationError as e:
    print(e)
# => TypeValidationError: Dataclass Type Validation (errors = {
#   'id': "must be an instance of <class 'int'>, but received <class 'str'>",
#   'name': "must be an instance of <class 'str'>, but received <class 'list'>",
#   'friend_ids': 'must be an instance of typing.List[int], but there are some errors:
#       ["must be an instance of <class \'int\'>, but received <class \'str\'>"]'})

You can also pass the strict param (which defaults to False) to the decorator:

@dataclass_validate(strict=True)
@dataclass(frozen=True)
class SomeList:
    values: List[str]

# Invalid item contained in typed List
try:
    SomeList(values=["one", "two", 3])
except TypeValidationError as e:
    print(e)
# => TypeValidationError: Dataclass Type Validation Error (errors = {
#   'x': 'must be an instance of typing.List[str], but there are some errors: 
#       ["must be an instance of <class \'str\'>, but received <class \'int\'>"]'})

You can also pass the before_post_init param (which defaults to False) to the decorator, to force the type validation to occur before __post_init__() is called. This can be used to ensure the types of the field values have been validated before your higher-level semantic validation is performed in __post_init__().

@dataclass_validate(before_post_init=True)
@dataclass
class User:
    id: int
    name: str

    def __post_init__(self):
        # types of id and name have already been checked before this is called.
        # Otherwise, the following check will throw a TypeError if user passed 
        # `id` as a string or other type that cannot be compared to int.
        if id < 1:
            raise ValueError("superuser not allowed")

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for dataclass-type-validator, version 0.1.0
Filename, size File type Python version Upload date Hashes
Filename, size dataclass_type_validator-0.1.0-py3-none-any.whl (6.9 kB) File type Wheel Python version py3 Upload date Hashes View
Filename, size dataclass-type-validator-0.1.0.tar.gz (5.6 kB) File type Source Python version None Upload date Hashes View

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring DigiCert DigiCert EV certificate Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page