Skip to main content

DataHeroes - Build Better ML Models 10x Faster

Project description

DataHeroes

DataHeroes is a Python library that solves some of today’s biggest machine learning challenges: reducing the time, effort and resources required to develop and maintain high-quality machine learning models.

DataHeroes uses a unique methodology called Coresets, originating in computational geometry, to reduce the size of the dataset to a small subset that maintains the statistical properties and corner cases of the full dataset, such that solving a problem on the Coreset will yield the same result as solving it on the full dataset (to learn more about Coresets, visit our Introduction to Coresets page).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

dataheroes-0.17.0-cp311-cp311-win_amd64.whl (8.1 MB view details)

Uploaded CPython 3.11Windows x86-64

dataheroes-0.17.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (56.0 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

dataheroes-0.17.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (55.0 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ ARM64

dataheroes-0.17.0-cp311-cp311-macosx_13_0_arm64.whl (8.7 MB view details)

Uploaded CPython 3.11macOS 13.0+ ARM64

dataheroes-0.17.0-cp310-cp310-win_amd64.whl (8.0 MB view details)

Uploaded CPython 3.10Windows x86-64

dataheroes-0.17.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (49.6 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

dataheroes-0.17.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (48.5 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ ARM64

dataheroes-0.17.0-cp310-cp310-macosx_13_0_arm64.whl (8.7 MB view details)

Uploaded CPython 3.10macOS 13.0+ ARM64

dataheroes-0.17.0-cp39-cp39-win_amd64.whl (8.1 MB view details)

Uploaded CPython 3.9Windows x86-64

dataheroes-0.17.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (49.6 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

dataheroes-0.17.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (48.5 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ ARM64

dataheroes-0.17.0-cp38-cp38-win_amd64.whl (8.1 MB view details)

Uploaded CPython 3.8Windows x86-64

dataheroes-0.17.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (51.2 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

dataheroes-0.17.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (50.0 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ ARM64

File details

Details for the file dataheroes-0.17.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for dataheroes-0.17.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 c988d4abae3cf34c9962c1df1f14c74265038a04aee4bf629144c434243a7d23
MD5 91f2a33adca502e484f95e6170427cf3
BLAKE2b-256 394f48aaf23c19111dd0f729008489513cf96bcdf60a2e73971331b4ea2076ff

See more details on using hashes here.

File details

Details for the file dataheroes-0.17.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for dataheroes-0.17.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3afaafa8b0062a0745082a034914d6ff9732bcb988f37d91268df1c247ee3940
MD5 1dbfe8e293dc0d83dad5bd352dae2f4c
BLAKE2b-256 9d0b0de7657f11a2a4fcd8e97ec796a34890eb162f33b960bc28737aa3d4ce34

See more details on using hashes here.

File details

Details for the file dataheroes-0.17.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for dataheroes-0.17.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d6df4ce531f7d7a5071963558243f37f0c01a993bc705162a6a19928b8b5c126
MD5 aa1890102e7fe469cffce45fa39cc4b6
BLAKE2b-256 a4d3265568a44a22f15b3f99a4ba46d8bed2e3342ae889febd2af870b6d659a7

See more details on using hashes here.

File details

Details for the file dataheroes-0.17.0-cp311-cp311-macosx_13_0_arm64.whl.

File metadata

File hashes

Hashes for dataheroes-0.17.0-cp311-cp311-macosx_13_0_arm64.whl
Algorithm Hash digest
SHA256 2104fb47a5cb5c79fc268f79bf831a925e61d3c5e36452775bc440863ded2e53
MD5 ddde403ecc644e16fff6c2ff7dc2f1ae
BLAKE2b-256 88db19b0ea4faf0e878c67d833ae51e3c86982b20c3bcb032cf6839319e723c2

See more details on using hashes here.

File details

Details for the file dataheroes-0.17.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for dataheroes-0.17.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 df3a672c0899ba25694190b9512af08fe95e2fa120b8a4f3e1a7581bc261be4e
MD5 46152af5558f7edf52fc0e382f05bc66
BLAKE2b-256 7284b570ae6ded385fcbd9e1767e992406362e98864a5d5fa2613aa6d91c5545

See more details on using hashes here.

File details

Details for the file dataheroes-0.17.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for dataheroes-0.17.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4926c16c39ac985b76ccb348a704fbae8acd5f164e24c37d461cd5155a6c9d28
MD5 aa3bdf94134af7084a1eb7fee94669dd
BLAKE2b-256 540b137992d970b797eb73dc0f6d3a01d34afedc770f6b506ac10ae42aa9aa47

See more details on using hashes here.

File details

Details for the file dataheroes-0.17.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for dataheroes-0.17.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 efc0c2ba58e631fb1419facbc47cfceae6502518a48f72b37250bdb45f03fe2f
MD5 28316ddeec76d0de1f42120f516edee1
BLAKE2b-256 0e16f54ac375f9c690b903dab373b6bbecef05b2e6ed7dd147dc4130d813581d

See more details on using hashes here.

File details

Details for the file dataheroes-0.17.0-cp310-cp310-macosx_13_0_arm64.whl.

File metadata

File hashes

Hashes for dataheroes-0.17.0-cp310-cp310-macosx_13_0_arm64.whl
Algorithm Hash digest
SHA256 3f0064aa84c10333c35f7c96d62e150baa7ec5ee879e3ba827b33f7f1b2d72d6
MD5 18628b5ecb5404e6fc0c907f77c5b9ef
BLAKE2b-256 8ab1c142032acb5846361db9eb02e711f3f4dc35c05a6489e85f1eb105697750

See more details on using hashes here.

File details

Details for the file dataheroes-0.17.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: dataheroes-0.17.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 8.1 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.9.22

File hashes

Hashes for dataheroes-0.17.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 39f6df4b95c6c7e44b4a97ffe7c2e33c41a8d27296dfbe6aceb3dc2effed5f45
MD5 95fa415dcdd7df3b80fd907da6d808e6
BLAKE2b-256 b9ea3eac0ef9f10964be5f801878a87764f219535c9d5aec7c14bbd786e5289f

See more details on using hashes here.

File details

Details for the file dataheroes-0.17.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for dataheroes-0.17.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e54e7ec8e9c78f10dbabb2be85191cf0c917517b9c4ac9560d774a3b32134ec7
MD5 09be47e11d8887ed0e1c5ba7774e3a2e
BLAKE2b-256 107881e11ff232d648851067b588a8493d07534a380482b6555729b446122043

See more details on using hashes here.

File details

Details for the file dataheroes-0.17.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for dataheroes-0.17.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7cfe4e6b4ee57d677828a4c15a6cc420587158fbeaedbba904337c92edd55395
MD5 24d910d421ac62831a60617fee139384
BLAKE2b-256 b09dc3a073fd1eab4252742f90fd2d7fc672ff7619ad9db503deb9195c906013

See more details on using hashes here.

File details

Details for the file dataheroes-0.17.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: dataheroes-0.17.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 8.1 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.9.22

File hashes

Hashes for dataheroes-0.17.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 0ca0feb69c4dd3e33b9afec6ef261bc9ba1727f733d7533181ede96809aa934e
MD5 17958e04a37bcd39e91c5ef2b743357d
BLAKE2b-256 e28602848911f76bc14858bfc081a3429809c9184b0050e97fc6d9af4301bd04

See more details on using hashes here.

File details

Details for the file dataheroes-0.17.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for dataheroes-0.17.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4ee45392cae045cf89217fb31f9f809fdad13691304cddc5ff3fe67a139960d0
MD5 c478a7b25667b5f6c28e93e54bcb96dc
BLAKE2b-256 9d8d02609f38ed3b3b8a8c01dea9dc640ca65e726073c2cc879872838ec22d48

See more details on using hashes here.

File details

Details for the file dataheroes-0.17.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for dataheroes-0.17.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 87c86b8cd3375febca463767baf27fc40d3c0f4ff42c1a6f565172466abae9c5
MD5 c69cabe71cecd98954d8f303b399932e
BLAKE2b-256 28b56f7fca6032ff124a18d76d5052fcb5eb96e4298bde19067987098445e5a8

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page