Skip to main content
Help the Python Software Foundation raise $60,000 USD by December 31st!  Building the PSF Q4 Fundraiser

Dataprep: Data Preparation in Python

Project description


Dataprep lets you prepare your data using a single library with a few lines of code.

Currently, you can use dataprep to:

  • Collect data from common data sources (through dataprep.connector)
  • Do your exploratory data analysis (through dataprep.eda)
  • ...more modules are coming

Releases

Installation

pip install -U dataprep

Examples & Usages

The following examples can give you an impression of what dataprep can do:

EDA

There are common tasks during the exploratory data analysis stage, like a quick look at the columnar distribution, or understanding the correlations between columns.

The EDA module categorizes these EDA tasks into functions helping you finish EDA tasks with a single function call.

  • Want to understand the distributions for each DataFrame column? Use plot.

  • Want to understand the correlation between columns? Use plot_correlation.

  • Or, if you want to understand the impact of the missing values for each column, use plot_missing.

You can drill down to get more information by given plot, plot_correlation and plot_missing a column name.: E.g. for plot_missing

    for numerical column usingplot:

    for categorical column usingplot:

Don't forget to checkout the examples folder for detailed demonstration!

Connector

Connector provides a simple way to collect data from different websites, offering several benefits:

  • A unified API: you can fetch data using one or two lines of code to get data from many websites.
  • Auto Pagination: it automatically does the pagination for you so that you can specify the desired count of the returned results without even considering the count-per-request restriction from the API.
  • Smart API request strategy: it can issue API requests in parallel while respecting the rate limit policy.

In the following examples, you can download the Yelp business search result into a pandas DataFrame, using only two lines of code, without taking deep looking into the Yelp documentation! More examples can be found here: Examples

Contribute

There are many ways to contribute to Dataprep.

  • Submit bugs and help us verify fixes as they are checked in.
  • Review the source code changes.
  • Engage with other Dataprep users and developers on StackOverflow.
  • Help each other in the Dataprep Community Discord and Mail list & Forum.
  • Twitter
  • Contribute bug fixes.
  • Providing use cases and writing down your user experience.

Please take a look at our wiki for development documentations!

Acknowledgement

Some functionalities of DataPrep are inspired by the following packages.

  • Pandas Profiling

    Inspired the report functionality and insights provided in DataPrep.eda.

  • missingno

    Inspired the missing value analysis in DataPrep.eda.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for dataprep, version 0.2.14
Filename, size File type Python version Upload date Hashes
Filename, size dataprep-0.2.14-py3-none-any.whl (155.0 kB) File type Wheel Python version py3 Upload date Hashes View
Filename, size dataprep-0.2.14.tar.gz (121.8 kB) File type Source Python version None Upload date Hashes View

Supported by

Pingdom Pingdom Monitoring Google Google Object Storage and Download Analytics Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page