Skip to main content

Python library for fast multi-threaded data manipulation and munging.

Project description

This is a Python package for manipulating 2-dimensional tabular data structures (aka data frames). It is close in spirit to pandas or SFrame; however we put specific emphasis on speed and big data support. As the name suggests, the package is closely related to R’s data.table and attempts to mimic its core algorithms and API.

See https://github.com/h2oai/datatable for more details.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

datatable-1.1.0.tar.gz (1.3 MB view details)

Uploaded Source

Built Distributions

datatable-1.1.0-cp312-cp312-manylinux_2_35_x86_64.whl (82.0 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.35+ x86-64

datatable-1.1.0-cp312-cp312-macosx_10_9_universal2.whl (8.3 MB view details)

Uploaded CPython 3.12 macOS 10.9+ universal2 (ARM64, x86-64)

datatable-1.1.0-cp311-cp311-win_amd64.whl (4.7 MB view details)

Uploaded CPython 3.11 Windows x86-64

datatable-1.1.0-cp311-cp311-manylinux_2_35_x86_64.whl (82.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.35+ x86-64

datatable-1.1.0-cp311-cp311-macosx_10_9_universal2.whl (8.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

datatable-1.1.0-cp310-cp310-win_amd64.whl (4.7 MB view details)

Uploaded CPython 3.10 Windows x86-64

datatable-1.1.0-cp310-cp310-manylinux_2_35_x86_64.whl (82.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.35+ x86-64

datatable-1.1.0-cp310-cp310-macosx_11_0_x86_64.whl (8.3 MB view details)

Uploaded CPython 3.10 macOS 11.0+ x86-64

datatable-1.1.0-cp39-cp39-win_amd64.whl (4.7 MB view details)

Uploaded CPython 3.9 Windows x86-64

datatable-1.1.0-cp39-cp39-manylinux_2_35_x86_64.whl (81.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.35+ x86-64

datatable-1.1.0-cp39-cp39-macosx_11_0_x86_64.whl (8.3 MB view details)

Uploaded CPython 3.9 macOS 11.0+ x86-64

datatable-1.1.0-cp38-cp38-win_amd64.whl (4.7 MB view details)

Uploaded CPython 3.8 Windows x86-64

datatable-1.1.0-cp38-cp38-manylinux_2_35_x86_64.whl (81.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.35+ x86-64

datatable-1.1.0-cp38-cp38-macosx_11_0_x86_64.whl (8.3 MB view details)

Uploaded CPython 3.8 macOS 11.0+ x86-64

File details

Details for the file datatable-1.1.0.tar.gz.

File metadata

  • Download URL: datatable-1.1.0.tar.gz
  • Upload date:
  • Size: 1.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.0

File hashes

Hashes for datatable-1.1.0.tar.gz
Algorithm Hash digest
SHA256 8a9f6953ef6b02ede3d7c490f17d5c18c9b1bf2d58dd5451a8cac40ed887d775
MD5 d54eb2afa650b385bb5e53e5be721b10
BLAKE2b-256 5e1e1a73489d0d9de1a1303fa89e154bc3f73e083441704a1e7d0954f685455f

See more details on using hashes here.

File details

Details for the file datatable-1.1.0-cp312-cp312-manylinux_2_35_x86_64.whl.

File metadata

File hashes

Hashes for datatable-1.1.0-cp312-cp312-manylinux_2_35_x86_64.whl
Algorithm Hash digest
SHA256 f7ad015e74499e5510e713b9594e69d36f7bb1f775a13c1473af5735a68a7f6f
MD5 472604fefb31759971d9cfc67005028b
BLAKE2b-256 907356a4592c195940697c1f7eaf7f888bdc00e80a5187063fff7f24da0356bc

See more details on using hashes here.

File details

Details for the file datatable-1.1.0-cp312-cp312-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for datatable-1.1.0-cp312-cp312-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 5eacc7ac02fdfb4f0d54a62c8254779acdc335e1ed0cd1e2fdfa639dc1c6e90c
MD5 b235d84fb69e243d03abc0ea3192923a
BLAKE2b-256 13744cde1cbb92bc01053abab6ff4f36f80109f783e5217a10f4fe1811eb1b4a

See more details on using hashes here.

File details

Details for the file datatable-1.1.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for datatable-1.1.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 3db4455924b0fdf5ec223d768b845f19c14903df92f89ab07eff1acd77af60dc
MD5 3a417587108312375112a4dbc050ea3f
BLAKE2b-256 bbc5987fcb116df777d2573c8918b7d7bb391405fa0ca3ed209238bf447b7aac

See more details on using hashes here.

File details

Details for the file datatable-1.1.0-cp311-cp311-manylinux_2_35_x86_64.whl.

File metadata

File hashes

Hashes for datatable-1.1.0-cp311-cp311-manylinux_2_35_x86_64.whl
Algorithm Hash digest
SHA256 135828e06b67f06c26de04817617a2d10e053c3102cf55073422721bcd3ce3c6
MD5 f8658d227f1255a291c9310d4a7fe58c
BLAKE2b-256 ca27248796b5cd38ac7ba54697a2c27bdd4788af2a40b3dec1bd8836c85e1c21

See more details on using hashes here.

File details

Details for the file datatable-1.1.0-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for datatable-1.1.0-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 d8d65300023eaef9503a1ec214538a21656a4c971b92cd22412958fc23d4e705
MD5 1932366065a770b46e12f84b04648691
BLAKE2b-256 7438acee9a9485a223b7420d7336b0c688882b1ecebd27d93ad874befe982950

See more details on using hashes here.

File details

Details for the file datatable-1.1.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for datatable-1.1.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 146b1f8f390ad0ea48a7a4be71131f2d0d0dd3e5d3bee0618e0e1f04ae9ac873
MD5 33f098115e88b6119b8814667015b90f
BLAKE2b-256 45bed29d323913b4f338b5614fbaf440aef26a45eee183277ff915c178f3c169

See more details on using hashes here.

File details

Details for the file datatable-1.1.0-cp310-cp310-manylinux_2_35_x86_64.whl.

File metadata

File hashes

Hashes for datatable-1.1.0-cp310-cp310-manylinux_2_35_x86_64.whl
Algorithm Hash digest
SHA256 e6e036fb6958da937bc2fb7422e0cc34f61b2d29427a2d8b8adb58d3f2d8accb
MD5 d14395144257296a794fac4dd6e23a6e
BLAKE2b-256 92306271bf8573eebb3a42884304c870dc7f2233298bb0b795514b2996ac2a53

See more details on using hashes here.

File details

Details for the file datatable-1.1.0-cp310-cp310-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for datatable-1.1.0-cp310-cp310-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 5e5dca228a574c86490d86742f78f0c5de57673f0016575823b618684f872ffc
MD5 d66194cd62a7603f79a083ef7b4e0fd0
BLAKE2b-256 4f4ee5e00b5625a5782b4ecf19ce877712feeb94185055f1290160c1e2382458

See more details on using hashes here.

File details

Details for the file datatable-1.1.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: datatable-1.1.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 4.7 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.0

File hashes

Hashes for datatable-1.1.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 df3e401020add760ae661392758050f4ea4e5c2a7b210c6c39de20c22877bdf5
MD5 38e9f2fc907c71e326c520fac7d404f8
BLAKE2b-256 6d0596eb58b16160060ed2f965993c3230e877b9edaeadee77bf0807538ab6f8

See more details on using hashes here.

File details

Details for the file datatable-1.1.0-cp39-cp39-manylinux_2_35_x86_64.whl.

File metadata

File hashes

Hashes for datatable-1.1.0-cp39-cp39-manylinux_2_35_x86_64.whl
Algorithm Hash digest
SHA256 da224478d6a926977e651e7a8082d83f43d168c24e88523f873cc1a5e874dae3
MD5 eeec8558d3bb24d5790e21838c5fc3cf
BLAKE2b-256 cd1ef89f0e5c23c4f110e499a61386f470e39259171b8b35df1dd57461f48a05

See more details on using hashes here.

File details

Details for the file datatable-1.1.0-cp39-cp39-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for datatable-1.1.0-cp39-cp39-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 88b7723b4bd5618cf850b0ab3efd5fb379b3f3f569796a970371f0753f15b80e
MD5 b19cad963992296e23c5749cbf59cff7
BLAKE2b-256 d7a7958e1ee3a7f7a86a062822c5b9fe4242e776450c8e3c5418050b69c0bb50

See more details on using hashes here.

File details

Details for the file datatable-1.1.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: datatable-1.1.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 4.7 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.0

File hashes

Hashes for datatable-1.1.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 863868fba4c13c3414b75482303cf1e97de5c54f1915c7d524459793673d6955
MD5 9bb96d2a15cac7390f23b1faaab022a7
BLAKE2b-256 b2d61a1d2151526ac3463d2858d129fc06a138b641686e994805806285c5e15b

See more details on using hashes here.

File details

Details for the file datatable-1.1.0-cp38-cp38-manylinux_2_35_x86_64.whl.

File metadata

File hashes

Hashes for datatable-1.1.0-cp38-cp38-manylinux_2_35_x86_64.whl
Algorithm Hash digest
SHA256 9d5731baa34a92fce1b186e9104a018590554e4d91d08150729f754ea2e4ad73
MD5 9e478808542cfacd5910bba428ff6572
BLAKE2b-256 8b8a517489613aae5bb9b88c39011c1ebc12785463c7fb0b91d0398192be59d1

See more details on using hashes here.

File details

Details for the file datatable-1.1.0-cp38-cp38-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for datatable-1.1.0-cp38-cp38-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 12d44e584503f1caa27448280d013540366589eee6ba33727c2b3d343069756d
MD5 46ab12ff1324c44b7a8f122b34ab0fce
BLAKE2b-256 cb77c995a1a4c9c649ca110f53ecbeb3b8d71c05aac666c9f49dfad162232a4c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page