Skip to main content

Machine Learning Orchestration

Project description

Dbnd Airflow Operator

This plugin was written to provide an explicit way of declaratively passing messages between two airflow operators.

This plugin was inspired by AIP-31. Essentially, this plugin connects between dbnd's implementation of tasks and pipelines to airflow operators.

This implementation uses XCom communication and XCom templates to transfer said messages. This plugin is fully functional, however as soon as AIP-31 is implemented it will support all edge-cases.

Fully tested on airflow 1.10.X.

Code Example

Here is an example of how we achieve our goal:

import logging
from typing import Tuple
from datetime import timedelta, datetime
from airflow import DAG
from airflow.utils.dates import days_ago
from airflow.operators.python_operator import PythonOperator
from dbnd import task

# Define arguments that we will pass to our DAG
default_args = {
    "owner": "airflow",
    "depends_on_past": False,
    "start_date": days_ago(2),
    "retries": 1,
    "retry_delay": timedelta(seconds=10),
}
@task
def my_task(p_int=3, p_str="check", p_int_with_default=0) -> str:
    logging.info("I am running")
    return "success"


@task
def my_multiple_outputs(p_str="some_string") -> Tuple[int, str]:
    return (1, p_str + "_extra_postfix")


def some_python_function(input_path, output_path):
    logging.error("I am running")
    input_value = open(input_path, "r").read()
    with open(output_path, "w") as output_file:
        output_file.write(input_value)
        output_file.write("\n\n")
        output_file.write(str(datetime.now().strftime("%Y-%m-%dT%H:%M:%S")))
    return "success"

# Define DAG context
with DAG(dag_id="dbnd_operators", default_args=default_args) as dag_operators:
    # t1, t2 and t3 are examples of tasks created by instantiating operators
    # All tasks and operators created under this DAG context will be collected as a part of this DAG
    t1 = my_task(2)
    t2, t3 = my_multiple_outputs(t1)
    python_op = PythonOperator(
        task_id="some_python_function",
        python_callable=some_python_function,
        op_kwargs={"input_path": t3, "output_path": "/tmp/output.txt"},
    )
    """
    t3.op describes the operator used to execute my_multiple_outputs
    This call defines the some_python_function task's operator as dependent upon t3's operator
    """
    python_op.set_upstream(t3.op)

As you can see, messages are passed explicitly between all three tasks:

  • t1, the result of the first task is passed to the next task my_multiple_outputs
  • t2 and t3 represent the results of my_multiple_outputs
  • some_python_function is wrapped with an operator
  • The new python operator is defined as dependent upon t3's execution (downstream) - explicitly.

Note: If you run a function marked with the @task decorator without a DAG context, and without using the dbnd library to run it - it will execute absolutely normally!

Using this method to pass arguments between tasks not only improves developer user-experience, but also allows for pipeline execution support for many use-cases. It does not break currently existing DAGs.

Using dbnd_config

Let's look at the example again, but change the default_args defined at the very top:

default_args = {
    "owner": "airflow",
    "depends_on_past": False,
    "start_date": days_ago(2),
    "retries": 1,
    "retry_delay": timedelta(minutes=5),
    'dbnd_config': {
        "my_task.p_int_with_default": 4
    }
}

Added a new key-value pair to the arguments called dbnd_config

dbnd_config is expected to define a dictionary of configuration settings that you can pass to your tasks. For example, the dbnd_config in this code section defines that the int parameter p_int_with_default passed to my_task will be overridden and changed to 4 from the default value 0.

To see further possibilities of changing configuration settings, see our documentation

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dbnd_airflow-1.0.30.1.tar.gz (39.3 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

dbnd_airflow-1.0.30.1-py2.py3-none-any.whl (47.3 kB view details)

Uploaded Python 2Python 3

File details

Details for the file dbnd_airflow-1.0.30.1.tar.gz.

File metadata

  • Download URL: dbnd_airflow-1.0.30.1.tar.gz
  • Upload date:
  • Size: 39.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.10.9

File hashes

Hashes for dbnd_airflow-1.0.30.1.tar.gz
Algorithm Hash digest
SHA256 07c56061c7c76ab4345cddffbd87505a1e3e7ac4da65256eb0a056639fe7cde0
MD5 7407bf00604f5046e46749c10abf1140
BLAKE2b-256 632b3d8f48c7d9b0e715c8a94a8d5eb8e740577f844516d96814cece4fce63ed

See more details on using hashes here.

File details

Details for the file dbnd_airflow-1.0.30.1-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for dbnd_airflow-1.0.30.1-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 70e5f07cfa272044d0a456a64b84f338885f3b1ba9d14451531d5c7facf42623
MD5 ec17cfe7ec8a41236ba0279f08e930ec
BLAKE2b-256 e41eb0b2d339455c46962204570cad8e85ae55bcba51f34946d58867931fb8bb

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page