Skip to main content

Distributed Evolutionary Algorithms in Python

Project description

English | 简体中文

DEAP

Build status Download Join the chat at https://gitter.im/DEAP/deap Build Status Documentation Status

DEAP is a novel evolutionary computation framework for rapid prototyping and testing of ideas. It seeks to make algorithms explicit and data structures transparent. It works in perfect harmony with parallelisation mechanisms such as multiprocessing and SCOOP.

DEAP includes the following features:

  • Genetic algorithm using any imaginable representation

    • List, Array, Set, Dictionary, Tree, Numpy Array, etc.
  • Genetic programming using prefix trees

    • Loosely typed, Strongly typed
    • Automatically defined functions
  • Evolution strategies (including CMA-ES)

  • Multi-objective optimisation (NSGA-II, NSGA-III, SPEA2, MO-CMA-ES)

  • Co-evolution (cooperative and competitive) of multiple populations

  • Parallelization of the evaluations (and more)

  • Hall of Fame of the best individuals that lived in the population

  • Checkpoints that take snapshots of a system regularly

  • Benchmarks module containing most common test functions

  • Genealogy of an evolution (that is compatible with NetworkX)

  • Examples of alternative algorithms : Particle Swarm Optimization, Differential Evolution, Estimation of Distribution Algorithm

Downloads

Following acceptance of PEP 438 by the Python community, we have moved DEAP's source releases on PyPI.

You can find the most recent releases at: https://pypi.python.org/pypi/deap/.

Documentation

See the DEAP User's Guide for DEAP documentation.

In order to get the tip documentation, change directory to the doc subfolder and type in make html, the documentation will be under _build/html. You will need Sphinx to build the documentation.

Notebooks

Also checkout our new notebook examples. Using Jupyter notebooks you'll be able to navigate and execute each block of code individually and tell what every line is doing. Either, look at the notebooks online using the notebook viewer links at the botom of the page or download the notebooks, navigate to the you download directory and run

jupyter notebook

Installation

We encourage you to use easy_install or pip to install DEAP on your system. Other installation procedure like apt-get, yum, etc. usually provide an outdated version.

pip install deap

The latest version can be installed with

pip install git+https://github.com/DEAP/deap@master

If you wish to build from sources, download or clone the repository and type

python setup.py install

Build Status

DEAP build status is available on Travis-CI https://travis-ci.org/DEAP/deap.

Requirements

The most basic features of DEAP requires Python2.6. In order to combine the toolbox and the multiprocessing module Python2.7 is needed for its support to pickle partial functions. CMA-ES requires Numpy, and we recommend matplotlib for visualization of results as it is fully compatible with DEAP's API.

Since version 0.8, DEAP is compatible out of the box with Python 3. The installation procedure automatically translates the source to Python 3 with 2to3, however this requires having setuptools<=58. It is recommended to use pip install setuptools==57.5.0 to address this issue.

Example

The following code gives a quick overview how simple it is to implement the Onemax problem optimization with genetic algorithm using DEAP. More examples are provided here.

import random
from deap import creator, base, tools, algorithms

creator.create("FitnessMax", base.Fitness, weights=(1.0,))
creator.create("Individual", list, fitness=creator.FitnessMax)

toolbox = base.Toolbox()

toolbox.register("attr_bool", random.randint, 0, 1)
toolbox.register("individual", tools.initRepeat, creator.Individual, toolbox.attr_bool, n=100)
toolbox.register("population", tools.initRepeat, list, toolbox.individual)

def evalOneMax(individual):
    return sum(individual),

toolbox.register("evaluate", evalOneMax)
toolbox.register("mate", tools.cxTwoPoint)
toolbox.register("mutate", tools.mutFlipBit, indpb=0.05)
toolbox.register("select", tools.selTournament, tournsize=3)

population = toolbox.population(n=300)

NGEN=40
for gen in range(NGEN):
    offspring = algorithms.varAnd(population, toolbox, cxpb=0.5, mutpb=0.1)
    fits = toolbox.map(toolbox.evaluate, offspring)
    for fit, ind in zip(fits, offspring):
        ind.fitness.values = fit
    population = toolbox.select(offspring, k=len(population))
top10 = tools.selBest(population, k=10)

How to cite DEAP

Authors of scientific papers including results generated using DEAP are encouraged to cite the following paper.

@article{DEAP_JMLR2012, 
    author    = " F\'elix-Antoine Fortin and Fran\c{c}ois-Michel {De Rainville} and Marc-Andr\'e Gardner and Marc Parizeau and Christian Gagn\'e ",
    title     = { {DEAP}: Evolutionary Algorithms Made Easy },
    pages    = { 2171--2175 },
    volume    = { 13 },
    month     = { jul },
    year      = { 2012 },
    journal   = { Journal of Machine Learning Research }
}

Publications on DEAP

  • François-Michel De Rainville, Félix-Antoine Fortin, Marc-André Gardner, Marc Parizeau and Christian Gagné, "DEAP -- Enabling Nimbler Evolutions", SIGEVOlution, vol. 6, no 2, pp. 17-26, February 2014. Paper
  • Félix-Antoine Fortin, François-Michel De Rainville, Marc-André Gardner, Marc Parizeau and Christian Gagné, "DEAP: Evolutionary Algorithms Made Easy", Journal of Machine Learning Research, vol. 13, pp. 2171-2175, jul 2012. Paper
  • François-Michel De Rainville, Félix-Antoine Fortin, Marc-André Gardner, Marc Parizeau and Christian Gagné, "DEAP: A Python Framework for Evolutionary Algorithms", in !EvoSoft Workshop, Companion proc. of the Genetic and Evolutionary Computation Conference (GECCO 2012), July 07-11 2012. Paper

Projects using DEAP

  • Ribaric, T., & Houghten, S. (2017, June). Genetic programming for improved cryptanalysis of elliptic curve cryptosystems. In 2017 IEEE Congress on Evolutionary Computation (CEC) (pp. 419-426). IEEE.
  • Ellefsen, Kai Olav, Herman Augusto Lepikson, and Jan C. Albiez. "Multiobjective coverage path planning: Enabling automated inspection of complex, real-world structures." Applied Soft Computing 61 (2017): 264-282.
  • S. Chardon, B. Brangeon, E. Bozonnet, C. Inard (2016), Construction cost and energy performance of single family houses : From integrated design to automated optimization, Automation in Construction, Volume 70, p.1-13.
  • B. Brangeon, E. Bozonnet, C. Inard (2016), Integrated refurbishment of collective housing and optimization process with real products databases, Building Simulation Optimization, pp. 531–538 Newcastle, England.
  • Randal S. Olson, Ryan J. Urbanowicz, Peter C. Andrews, Nicole A. Lavender, La Creis Kidd, and Jason H. Moore (2016). Automating biomedical data science through tree-based pipeline optimization. Applications of Evolutionary Computation, pages 123-137.
  • Randal S. Olson, Nathan Bartley, Ryan J. Urbanowicz, and Jason H. Moore (2016). Evaluation of a Tree-based Pipeline Optimization Tool for Automating Data Science. Proceedings of GECCO 2016, pages 485-492.
  • Van Geit W, Gevaert M, Chindemi G, Rössert C, Courcol J, Muller EB, Schürmann F, Segev I and Markram H (2016). BluePyOpt: Leveraging open source software and cloud infrastructure to optimise model parameters in neuroscience. Front. Neuroinform. 10:17. doi: 10.3389/fninf.2016.00017 https://github.com/BlueBrain/BluePyOpt
  • Lara-Cabrera, R., Cotta, C. and Fernández-Leiva, A.J. (2014). Geometrical vs topological measures for the evolution of aesthetic maps in a rts game, Entertainment Computing,
  • Macret, M. and Pasquier, P. (2013). Automatic Tuning of the OP-1 Synthesizer Using a Multi-objective Genetic Algorithm. In Proceedings of the 10th Sound and Music Computing Conference (SMC). (pp 614-621).
  • Fortin, F. A., Grenier, S., & Parizeau, M. (2013, July). Generalizing the improved run-time complexity algorithm for non-dominated sorting. In Proceeding of the fifteenth annual conference on Genetic and evolutionary computation conference (pp. 615-622). ACM.
  • Fortin, F. A., & Parizeau, M. (2013, July). Revisiting the NSGA-II crowding-distance computation. In Proceeding of the fifteenth annual conference on Genetic and evolutionary computation conference (pp. 623-630). ACM.
  • Marc-André Gardner, Christian Gagné, and Marc Parizeau. Estimation of Distribution Algorithm based on Hidden Markov Models for Combinatorial Optimization. in Comp. Proc. Genetic and Evolutionary Computation Conference (GECCO 2013), July 2013.
  • J. T. Zhai, M. A. Bamakhrama, and T. Stefanov. "Exploiting Just-enough Parallelism when Mapping Streaming Applications in Hard Real-time Systems". Design Automation Conference (DAC 2013), 2013.
  • V. Akbarzadeh, C. Gagné, M. Parizeau, M. Argany, M. A Mostafavi, "Probabilistic Sensing Model for Sensor Placement Optimization Based on Line-of-Sight Coverage", Accepted in IEEE Transactions on Instrumentation and Measurement, 2012.
  • M. Reif, F. Shafait, and A. Dengel. "Dataset Generation for Meta-Learning". Proceedings of the German Conference on Artificial Intelligence (KI'12). 2012.
  • M. T. Ribeiro, A. Lacerda, A. Veloso, and N. Ziviani. "Pareto-Efficient Hybridization for Multi-Objective Recommender Systems". Proceedings of the Conference on Recommanders Systems (!RecSys'12). 2012.
  • M. Pérez-Ortiz, A. Arauzo-Azofra, C. Hervás-Martínez, L. García-Hernández and L. Salas-Morera. "A system learning user preferences for multiobjective optimization of facility layouts". Pr,oceedings on the Int. Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO'12). 2012.
  • Lévesque, J.C., Durand, A., Gagné, C., and Sabourin, R., Multi-Objective Evolutionary Optimization for Generating Ensembles of Classifiers in the ROC Space, Genetic and Evolutionary Computation Conference (GECCO 2012), 2012.
  • Marc-André Gardner, Christian Gagné, and Marc Parizeau, "Bloat Control in Genetic Programming with Histogram-based Accept-Reject Method", in Proc. Genetic and Evolutionary Computation Conference (GECCO 2011), 2011.
  • Vahab Akbarzadeh, Albert Ko, Christian Gagné, and Marc Parizeau, "Topography-Aware Sensor Deployment Optimization with CMA-ES", in Proc. of Parallel Problem Solving from Nature (PPSN 2010), Springer, 2010.
  • DEAP is used in TPOT, an open source tool that uses genetic programming to optimize machine learning pipelines.
  • DEAP is also used in ROS as an optimization package http://www.ros.org/wiki/deap.
  • DEAP is an optional dependency for PyXRD, a Python implementation of the matrix algorithm developed for the X-ray diffraction analysis of disordered lamellar structures.
  • DEAP is used in glyph, a library for symbolic regression with applications to MLC.
  • DEAP is used in Sklearn-genetic-opt, an open source tool that uses evolutionary programming to fine tune machine learning hyperparameters.

If you want your project listed here, send us a link and a brief description and we'll be glad to add it.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

deap-1.4.3.tar.gz (1.1 MB view details)

Uploaded Source

Built Distributions

deap-1.4.3-cp313-cp313-win_amd64.whl (109.8 kB view details)

Uploaded CPython 3.13Windows x86-64

deap-1.4.3-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (135.7 kB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ ARM64

deap-1.4.3-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (135.9 kB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ x86-64manylinux: glibc 2.5+ x86-64

deap-1.4.3-cp313-cp313-macosx_10_13_universal2.whl (111.3 kB view details)

Uploaded CPython 3.13macOS 10.13+ universal2 (ARM64, x86-64)

deap-1.4.3-cp312-cp312-win_amd64.whl (109.8 kB view details)

Uploaded CPython 3.12Windows x86-64

deap-1.4.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (135.8 kB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ ARM64

deap-1.4.3-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (136.0 kB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64manylinux: glibc 2.5+ x86-64

deap-1.4.3-cp312-cp312-macosx_10_13_universal2.whl (111.6 kB view details)

Uploaded CPython 3.12macOS 10.13+ universal2 (ARM64, x86-64)

deap-1.4.3-cp311-cp311-win_amd64.whl (109.7 kB view details)

Uploaded CPython 3.11Windows x86-64

deap-1.4.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (135.4 kB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ ARM64

deap-1.4.3-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (135.6 kB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64manylinux: glibc 2.5+ x86-64

deap-1.4.3-cp311-cp311-macosx_10_9_universal2.whl (111.4 kB view details)

Uploaded CPython 3.11macOS 10.9+ universal2 (ARM64, x86-64)

deap-1.4.3-cp310-cp310-win_amd64.whl (109.7 kB view details)

Uploaded CPython 3.10Windows x86-64

deap-1.4.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (135.4 kB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ ARM64

deap-1.4.3-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (135.6 kB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64manylinux: glibc 2.5+ x86-64

deap-1.4.3-cp310-cp310-macosx_13_0_x86_64.whl (104.5 kB view details)

Uploaded CPython 3.10macOS 13.0+ x86-64

deap-1.4.3-cp39-cp39-win_amd64.whl (110.5 kB view details)

Uploaded CPython 3.9Windows x86-64

deap-1.4.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (135.2 kB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ ARM64

deap-1.4.3-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (135.4 kB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64manylinux: glibc 2.5+ x86-64

deap-1.4.3-cp39-cp39-macosx_13_0_x86_64.whl (104.6 kB view details)

Uploaded CPython 3.9macOS 13.0+ x86-64

File details

Details for the file deap-1.4.3.tar.gz.

File metadata

  • Download URL: deap-1.4.3.tar.gz
  • Upload date:
  • Size: 1.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.10.17

File hashes

Hashes for deap-1.4.3.tar.gz
Algorithm Hash digest
SHA256 7c97088fb05835bdc255bec475cb0e778de2b43e44cbefbf2bcd655aeec865fd
MD5 9ff422e4e4e45a07b8e285f696620d69
BLAKE2b-256 c9373a3d82ca07e9eb2d8cdc1979ff82add35f1b41988c984db53ae582959c13

See more details on using hashes here.

File details

Details for the file deap-1.4.3-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: deap-1.4.3-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 109.8 kB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.3

File hashes

Hashes for deap-1.4.3-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 265fea2c4bc8b93871444721e4a4d96476ac2f5ff7a704140fa9be8112240d8d
MD5 a36676645a742d2f4ac21bf4dcb071e3
BLAKE2b-256 9a69053e5e900a47280b4aaabed4af5fea522ed0c6badb854581050c614582d4

See more details on using hashes here.

File details

Details for the file deap-1.4.3-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for deap-1.4.3-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8451c9856bf717dae31f8ef282f15f8230ecf8589fea2b1bc845ac178747645b
MD5 0fa85289a8a9d660d5b7c49ec13035ed
BLAKE2b-256 c449e5bc5231b0753b4b79df321f9a9013fad98066daf6bcc17ce5244b2cbd58

See more details on using hashes here.

File details

Details for the file deap-1.4.3-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for deap-1.4.3-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7b56cc88b7129332796489eb42f12f1a450ae6112722158a17b5a39c20d72ceb
MD5 b75f5d206ff2c22b79382c6b93a19426
BLAKE2b-256 7dfefc9d6426e268036de4740d046bb53430032fef58ea1a4affd07cf5eae642

See more details on using hashes here.

File details

Details for the file deap-1.4.3-cp313-cp313-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for deap-1.4.3-cp313-cp313-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 7358b56bd921897304f0adafe57363628807c10b8ad2e6b9e9d104c26fcb47b8
MD5 a559bce1f58810800ef90e5e7b438f4b
BLAKE2b-256 f1d0768fd1a9f9bc026574b8796bfb2e26913e7ce386db1de76008e00ba108da

See more details on using hashes here.

File details

Details for the file deap-1.4.3-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: deap-1.4.3-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 109.8 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.10

File hashes

Hashes for deap-1.4.3-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 e0bd83ad16ca8a467e9e9cbe814e2361f2bb80f6f10735e3c562945a924ff270
MD5 ab71e6d43a08ce1230dda2c368992982
BLAKE2b-256 2e61eb6508d90c4b250ae9cfea91849e3d4415ceff459f85310b7365077218a1

See more details on using hashes here.

File details

Details for the file deap-1.4.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for deap-1.4.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3128ef0b394c9026be7bf532f1e4e2527581af7bba19dabc30e91a42bc480114
MD5 c1ced8a6cab225642bd8b54253d475c4
BLAKE2b-256 d8e1f55c181ae31595715b550e7b80d7b52ff81ac3aa4769d26625aaa1f10c30

See more details on using hashes here.

File details

Details for the file deap-1.4.3-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for deap-1.4.3-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c34f5d132ac23f7554c3a71b6e9c0c402505c0e0b3bcacabd211ddc6283043b8
MD5 d0f8cb73805bd2bdaaa26a3a58b664ea
BLAKE2b-256 b034cba79381bccf50a24294c6a74e397b1c0163f347cf0d402bce7e83484358

See more details on using hashes here.

File details

Details for the file deap-1.4.3-cp312-cp312-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for deap-1.4.3-cp312-cp312-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 42dc370be0bf315c85da16afcea49eae4d1065a23c2ebee07831e5c635a6af0b
MD5 11625c3b3919c1149933ae8462886836
BLAKE2b-256 cd1104eb0940138f07a4241bb548e10671adc5ab5f27439fd505464f603c093d

See more details on using hashes here.

File details

Details for the file deap-1.4.3-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: deap-1.4.3-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 109.7 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.11.9

File hashes

Hashes for deap-1.4.3-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 1b00a3cbd61da09560abccf86a513f33ade55b22b708f14cb54f3a36a4b343a4
MD5 05e4a0cd6fe7db9a3d7553528fa75703
BLAKE2b-256 b298537dadfab160eb7c39da979f52018b6d416e1d8fc86895cf5638e4538a12

See more details on using hashes here.

File details

Details for the file deap-1.4.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for deap-1.4.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3ecfd57c96736c15edf2999b2fc357a4834fcefbfa59eba86646a48712cd6818
MD5 c3e8010d710f28d2d7f07e5d643d77e2
BLAKE2b-256 10f0f3e51e16effc8518340288add53ed81659257fd48ad10838241577646c16

See more details on using hashes here.

File details

Details for the file deap-1.4.3-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for deap-1.4.3-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 624562222365d8546c65878a028573151916e606f419bd45e0bd653c79435cb9
MD5 f18cdbe7a592050b98200b227b9a078c
BLAKE2b-256 e67cf7fb20f2fbbae6bd247b4621341cd0aaafb55e379115d57b4e88b21aec08

See more details on using hashes here.

File details

Details for the file deap-1.4.3-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for deap-1.4.3-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 4a9a940104b5b153e6bf010664882ba6994baf2c9c3f14f4ff515383e1fb16ad
MD5 97044677d8f4b3838b6a56aa63ac1623
BLAKE2b-256 6d8948a1f7b94a754d91634183c5a88b76a461620dc9c3fceb0abb3b6badbc3b

See more details on using hashes here.

File details

Details for the file deap-1.4.3-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: deap-1.4.3-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 109.7 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.10.11

File hashes

Hashes for deap-1.4.3-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 ba65ca9c84b79c48a34cc8411f6de03bde6852b484a36ec9c7561675a514861a
MD5 8b48523856213e7db95694242bfc3612
BLAKE2b-256 b4279eca548d25e412f3198396ed0d0d26d3d78cbc429f8e2672227b6c913604

See more details on using hashes here.

File details

Details for the file deap-1.4.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for deap-1.4.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3b8435f8e4400da6a69fecf4ffc93ac38d5a0439982cf7132168a052ab93800e
MD5 3975326e361da5e022b6c9ef3e083c41
BLAKE2b-256 c340fdbdfe1142779dfc46e96e62b94f31f0fc78b54327da13c9d2ce373e77ef

See more details on using hashes here.

File details

Details for the file deap-1.4.3-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for deap-1.4.3-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 433ff172be4eb41c45592c6705e8fdb2413b709ced874407b7a52d56ed55ae5f
MD5 bb9183ff83090b0a51b97efabd8bd456
BLAKE2b-256 c03ff7eb41c95eab49d4c6bbd347df3f19a91f64e6b684623fc40baa9fa1c55e

See more details on using hashes here.

File details

Details for the file deap-1.4.3-cp310-cp310-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for deap-1.4.3-cp310-cp310-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 05be2be3a3f2922b83143c755b58e64d1795be7e35f962ad925e61f1eb498f15
MD5 25702e6f9b96ec1148b0f91c1b7e8f5d
BLAKE2b-256 d35f3c7910097a5727f788f47c84d25d7782c7bafb595340ba586fd7d61fee52

See more details on using hashes here.

File details

Details for the file deap-1.4.3-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: deap-1.4.3-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 110.5 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.9.13

File hashes

Hashes for deap-1.4.3-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 8cc997ab19e73d2a9cc38f321a97d8e7be7f2998f7a70f3ca175d72fb7d7d2bd
MD5 352d8a227354eab5c97603733d42f716
BLAKE2b-256 6cb02c489532f246881277d1253aaa322af60215e4edf6f03d0475241c18f137

See more details on using hashes here.

File details

Details for the file deap-1.4.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for deap-1.4.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9ff73579914f236426c75f8994bce079643f2378720f7f9976f816cf60844991
MD5 fa77ab57159a7d0a91507457a8d2770a
BLAKE2b-256 513b9d00807c5d7c6f3914c0059b8c2dbe55e38deb000529cebbe186cc8c60cc

See more details on using hashes here.

File details

Details for the file deap-1.4.3-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for deap-1.4.3-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1bfe194ba502676c15394f166b7d4ca2f2636fd1bdcf793f3bf08fa9bb62ef05
MD5 2a9dc90ce3e12f8c6895fbbe405d0c4f
BLAKE2b-256 57f5baa17edd6ba89bc4eed959bec0ff6697f36f7b57e01e19ec963830c62d9b

See more details on using hashes here.

File details

Details for the file deap-1.4.3-cp39-cp39-macosx_13_0_x86_64.whl.

File metadata

  • Download URL: deap-1.4.3-cp39-cp39-macosx_13_0_x86_64.whl
  • Upload date:
  • Size: 104.6 kB
  • Tags: CPython 3.9, macOS 13.0+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.9.22

File hashes

Hashes for deap-1.4.3-cp39-cp39-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 4c382dedf025d9dc71f502f492acfe372cb0000f9cf47dd7c240a9837ce0d075
MD5 78aff989591f0cbb7ef81b71a036d39e
BLAKE2b-256 dcdbc98d848fdb9a86c8ec01e378b1c78eab60f38de14674a59f778676044900

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page