Deep Continuous Local Learning
Project description
# Deep Continuous Local Learning (DECOLLE)
DECOLLE is an online learning framework for spiking neural networks. The algorithmic details are described in this [Frontiers paper](https://www.frontiersin.org/articles/10.3389/fnins.2020.00424/full). If you use this work in your research, please cite as:
` @ARTICLE{decolle2020, AUTHOR={Kaiser, Jacques and Mostafa, Hesham and Neftci, Emre}, TITLE={Synaptic Plasticity Dynamics for Deep Continuous Local Learning (DECOLLE)}, JOURNAL={Frontiers in Neuroscience}, VOLUME={14}, PAGES={424}, YEAR={2020}, URL={https://www.frontiersin.org/article/10.3389/fnins.2020.00424}, DOI={10.3389/fnins.2020.00424}, ISSN={1662-453X} `
### Installing Clone and install. The Python setuptools will take care of dependencies ` git clone https://github.com/nmi-lab/decolle-public.git cd decolle-public python setup.py install --user `
The following will run decolle on the default parameter set ` cd scripts python train_lenet_decolle.py `
All parameter sets are contained in scripts/parameters, you can use them as such: ` cd scripts python train_lenet_decolle.py --params_file=parameters/params_dvsgestures_torchneuromorphic_attention.yml `
## Authors
Emre Neftci - Initial work - [eneftci](https://github.com/eneftci)
Jacques Kaiser - [jackokaiser](https://github.com/jackokaiser)
Massi Iacono - [miacono](https://github.com/miacono)
## License
This project is licensed under the GPLv3 License - see the [LICENSE.txt](LICENSE.txt) file for details
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Filter files by name, interpreter, ABI, and platform.
If you're not sure about the file name format, learn more about wheel file names.
Copy a direct link to the current filters
File details
Details for the file decolle-0.2.tar.gz.
File metadata
- Download URL: decolle-0.2.tar.gz
- Upload date:
- Size: 38.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.6.0 importlib_metadata/4.8.1 pkginfo/1.8.3 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.64.0 CPython/3.10.5
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
f50b3659d3882be660bcd71037e154b01df3edc71e22f426e21e3d0fd670f8a1
|
|
| MD5 |
de883f7f2b1ba3bffb5582ea47173b11
|
|
| BLAKE2b-256 |
f94acf5b2ac54b99660f00923047638e2904f84762fc00185c22e00039b27aeb
|
File details
Details for the file decolle-0.2-py3-none-any.whl.
File metadata
- Download URL: decolle-0.2-py3-none-any.whl
- Upload date:
- Size: 43.5 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.6.0 importlib_metadata/4.8.1 pkginfo/1.8.3 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.64.0 CPython/3.10.5
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
16ba50ee5ffe37454fab5894154986f60101954a94e84c6103050c75f282b47f
|
|
| MD5 |
89f9903e757fa08199889a42f3eae856
|
|
| BLAKE2b-256 |
adccd7054d262c01f1d86e1350916f5adcf19f3094edc802c5e0e8cea929a551
|