Skip to main content

Graph Language Models

Project description

Graph Language Models

build tests

License MIT Code style: black

PyPI version PyPI - Python Version

PyPI - Downloads

Getting Started

Finding entities and relations via NLP on text and documents

To get easily started, simply install the deepsearch-glm package from PyPi. This can be done using the traditional pip install deepsearch-glm or via poetry poetry add deepsearch-glm.

Below, you can find the code-snippet to process pieces of text,

from deepsearch_glm.utils.load_pretrained_models import load_pretrained_nlp_models
from deepsearch_glm.nlp_utils import init_nlp_model, print_on_shell

load_pretrained_nlp_models(force=False, verbose=False)
mdl = init_nlp_model()

# from Wikipedia (https://en.wikipedia.org/wiki/France)
text = """
France (French: [fʁɑ̃s] Listen), officially the French Republic
(French: République française [ʁepyblik fʁɑ̃sɛz]),[14] is a country
located primarily in Western Europe. It also includes overseas regions
and territories in the Americas and the Atlantic, Pacific and Indian
Oceans,[XII] giving it one of the largest discontiguous exclusive
economic zones in the world.
"""

res = mdl.apply_on_text(text)
print_on_shell(text, res)

The last command will print the pandas dataframes on the shell and provides the following output,

text:

   #France (French: [fʁɑ̃s] Listen), officially the French Republic
(French: République française [ʁepyblik fʁɑ̃sɛz]),[14] is a country
located primarily in Western Europe. It also includes overseas regions
and territories in the Americas and the Atlantic, Pacific and Indian
Oceans, giving it one of the largest discontiguous exclusive economic
zones in the world.

properties:

         type label  confidence
0  language    en    0.897559

instances:

  type         subtype               subj_path      char_i    char_j  original
-----------  --------------------  -----------  --------  --------  ---------------------------------------------------------------------
sentence                           #                   1       180  France (French: [fʁɑ̃s] Listen), officially the French Republic
                                                                    (French: République française [ʁepyblik fʁɑ̃sɛz]),[14] is a country
                                                                    located primarily in Western Europe.
term         single-term           #                   1         8  #France
expression   wtoken-concatenation  #                   1         8  #France
parenthesis  round brackets        #                   9        36  (French: [fʁɑ̃s] Listen)
expression   wtoken-concatenation  #                  18        28  [fʁɑ̃s]
term         single-term           #                  29        35  Listen
term         single-term           #                  53        68  French Republic
parenthesis  round brackets        #                  69       125  (French: République française [ʁepyblik fʁɑ̃sɛz])
term         single-term           #                  78       100  République française
term         single-term           #                 112       124  fʁɑ̃sɛz]
parenthesis  reference             #                 126       130  [14]
numval       ival                  #                 127       129  14
term         single-term           #                 136       143  country
term         single-term           #                 165       179  Western Europe
sentence                           #                 181       373  It also includes overseas regions and territories in the Americas and
                                                                    the Atlantic, Pacific and Indian Oceans, giving it one of the largest
                                                                    discontiguous exclusive economic zones in the world.
term         single-term           #                 198       214  overseas regions
term         enum-term-mark-3      #                 207       230  regions and territories
term         single-term           #                 219       230  territories
term         single-term           #                 238       246  Americas
term         enum-term-mark-4      #                 255       290  Atlantic, Pacific and Indian Oceans
term         single-term           #                 255       263  Atlantic
term         single-term           #                 265       272  Pacific
term         single-term           #                 277       290  Indian Oceans
term         single-term           #                 313       359  largest discontiguous exclusive economic zones
term         single-term           #                 367       372  world

The NLP can also be applied on entire documents which were converted using Deep Search. A simple example is shown below,

from deepsearch_glm.utils.load_pretrained_models import load_pretrained_nlp_models
from deepsearch_glm.nlp_utils import init_nlp_model, print_on_shell

load_pretrained_nlp_models(force=False, verbose=False)
mdl = init_nlp_model()

with open("<path-to-json-file-of-converted-pdf-doc>", "r") as fr:
    doc = json.load(fr)

enriched_doc = mdl.apply_on_doc(doc)

Creating Graphs from NLP entities and relations in document collections

To create graphs, you need two ingredients, namely,

  1. a collection of text or documents
  2. a set of NLP models that provide entities and relations

Below is a code snippet to create the graph using these basic ingredients,

odir = "<ouput-dir-to-save-graph>"
json_files = ["json-file of converted PDF document"]
model_names = "<list of NLP models:langauge;term;verb;abbreviation>"

glm = create_glm_from_docs(odir, json_files, model_names)	

Querying Graphs

TBD

Install for development

Python installation

To use the python interface, first make sure all dependencies are installed. We use poetry for that. To install all the dependent python packages and get the python bindings, simply execute,

poetry install --all-extras

CXX compilation

To compile from scratch, simply run the following command in the deepsearch-glm root folder to create the build directory,

cmake -B ./build; 

Next, compile the code from scratch,

cmake --build ./build -j

Run using the Python Interface

NLP and GLM examples

Note: Some of the examples require to convert PDF documents with Deep Search. For this to run, it is required to install the deepsearch-toolkit package. You can install it with pip install deepsearch-glm[toolkit].

To run the examples, simply do execute the scripts as poetry run python <script> <input>. Examples are,

  1. apply NLP on document(s)
poetry run python ./deepsearch_glm/nlp_apply_on_docs.py --pdf './data/documents/articles/2305.*.pdf' --models 'language;term'
  1. analyse NLP on document(s)
poetry run python ./deepsearch_glm/nlp_apply_on_docs.py --json './data/documents/articles/2305.*.nlp.json' 
  1. create GLM from document(s)
poetry run python ./deepsearch_glm/glm_create_from_docs.py --pdf ./data/documents/reports/2022-ibm-annual-report.pdf

Deep Search utilities

To use the Deep Search capabilities, it is required to install the deepsearch-toolkit package. You can install it with pip install deepsearch-glm[toolkit].

  1. Query and download document(s)
poetry run python ./deepsearch_glm/utils/ds_query.py --index patent-uspto --query "\"global warming potential\" AND \"etching\""
  1. Converting PDF document(s) into JSON
poetry run python ./deepsearch_glm/utils/ds_convert.py --pdf './data/documents/articles/2305.*.pdf'"

Run using CXX executables

If you like to be bare-bones, you can also use the executables for NLP and GLM's directly. In general, we follow a simple scheme of the form

./nlp.exe -m <mode> -c <JSON-config file>
./glm.exe -m <mode> -c <JSON-config file>

In both cases, the modes can be queried directly via the -h or --help

./nlp.exe -h
./glm.exe -h

and the configuration files can be generated,

./nlp.exe -m create-configs
./glm.exe -m create-configs

Natural Language Processing (NLP)

After you have generated the configuration files (see above), you can

  1. train simple NLP models
./nlp.exe -m train -c nlp_train_config.json
  1. leverage pre-trained models
./nlp.exe -m predict -c nlp_predict.example.json

Graph Language Models (GLM)

  1. create a GLM
./glm.exe -m create -c glm_config_create.json
  1. explore interactively the GLM
./glm.exe -m explore -c glm_config_explore.json

Testing

To run the tests, simply execute (after installation),

poetry run pytest ./tests -vvv -s

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

deepsearch_glm-0.26.1.tar.gz (2.4 MB view details)

Uploaded Source

Built Distributions

deepsearch_glm-0.26.1-pp310-pypy310_pp73-win_amd64.whl (14.6 MB view details)

Uploaded PyPy Windows x86-64

deepsearch_glm-0.26.1-pp39-pypy39_pp73-win_amd64.whl (14.6 MB view details)

Uploaded PyPy Windows x86-64

deepsearch_glm-0.26.1-cp313-cp313-win_amd64.whl (7.9 MB view details)

Uploaded CPython 3.13 Windows x86-64

deepsearch_glm-0.26.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.8 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ x86-64

deepsearch_glm-0.26.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (7.4 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ ARM64

deepsearch_glm-0.26.1-cp313-cp313-macosx_14_0_x86_64.whl (6.4 MB view details)

Uploaded CPython 3.13 macOS 14.0+ x86-64

deepsearch_glm-0.26.1-cp313-cp313-macosx_14_0_arm64.whl (5.9 MB view details)

Uploaded CPython 3.13 macOS 14.0+ ARM64

deepsearch_glm-0.26.1-cp313-cp313-macosx_13_0_x86_64.whl (6.3 MB view details)

Uploaded CPython 3.13 macOS 13.0+ x86-64

deepsearch_glm-0.26.1-cp313-cp313-macosx_13_0_arm64.whl (5.9 MB view details)

Uploaded CPython 3.13 macOS 13.0+ ARM64

deepsearch_glm-0.26.1-cp312-cp312-win_amd64.whl (7.9 MB view details)

Uploaded CPython 3.12 Windows x86-64

deepsearch_glm-0.26.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.8 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

deepsearch_glm-0.26.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (7.4 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

deepsearch_glm-0.26.1-cp312-cp312-macosx_14_0_x86_64.whl (6.4 MB view details)

Uploaded CPython 3.12 macOS 14.0+ x86-64

deepsearch_glm-0.26.1-cp312-cp312-macosx_14_0_arm64.whl (5.9 MB view details)

Uploaded CPython 3.12 macOS 14.0+ ARM64

deepsearch_glm-0.26.1-cp312-cp312-macosx_13_0_x86_64.whl (6.3 MB view details)

Uploaded CPython 3.12 macOS 13.0+ x86-64

deepsearch_glm-0.26.1-cp312-cp312-macosx_13_0_arm64.whl (5.9 MB view details)

Uploaded CPython 3.12 macOS 13.0+ ARM64

deepsearch_glm-0.26.1-cp311-cp311-win_amd64.whl (7.9 MB view details)

Uploaded CPython 3.11 Windows x86-64

deepsearch_glm-0.26.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

deepsearch_glm-0.26.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (7.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

deepsearch_glm-0.26.1-cp311-cp311-macosx_14_0_x86_64.whl (6.4 MB view details)

Uploaded CPython 3.11 macOS 14.0+ x86-64

deepsearch_glm-0.26.1-cp311-cp311-macosx_14_0_arm64.whl (5.9 MB view details)

Uploaded CPython 3.11 macOS 14.0+ ARM64

deepsearch_glm-0.26.1-cp311-cp311-macosx_13_0_x86_64.whl (6.3 MB view details)

Uploaded CPython 3.11 macOS 13.0+ x86-64

deepsearch_glm-0.26.1-cp311-cp311-macosx_13_0_arm64.whl (5.9 MB view details)

Uploaded CPython 3.11 macOS 13.0+ ARM64

deepsearch_glm-0.26.1-cp310-cp310-win_amd64.whl (7.9 MB view details)

Uploaded CPython 3.10 Windows x86-64

deepsearch_glm-0.26.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

deepsearch_glm-0.26.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (7.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

deepsearch_glm-0.26.1-cp310-cp310-macosx_14_0_x86_64.whl (6.3 MB view details)

Uploaded CPython 3.10 macOS 14.0+ x86-64

deepsearch_glm-0.26.1-cp310-cp310-macosx_14_0_arm64.whl (5.9 MB view details)

Uploaded CPython 3.10 macOS 14.0+ ARM64

deepsearch_glm-0.26.1-cp310-cp310-macosx_13_0_x86_64.whl (6.3 MB view details)

Uploaded CPython 3.10 macOS 13.0+ x86-64

deepsearch_glm-0.26.1-cp310-cp310-macosx_13_0_arm64.whl (5.9 MB view details)

Uploaded CPython 3.10 macOS 13.0+ ARM64

deepsearch_glm-0.26.1-cp39-cp39-win_amd64.whl (7.9 MB view details)

Uploaded CPython 3.9 Windows x86-64

deepsearch_glm-0.26.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

deepsearch_glm-0.26.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (7.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

deepsearch_glm-0.26.1-cp39-cp39-macosx_14_0_x86_64.whl (6.4 MB view details)

Uploaded CPython 3.9 macOS 14.0+ x86-64

deepsearch_glm-0.26.1-cp39-cp39-macosx_14_0_arm64.whl (5.9 MB view details)

Uploaded CPython 3.9 macOS 14.0+ ARM64

deepsearch_glm-0.26.1-cp39-cp39-macosx_13_0_x86_64.whl (6.3 MB view details)

Uploaded CPython 3.9 macOS 13.0+ x86-64

deepsearch_glm-0.26.1-cp39-cp39-macosx_13_0_arm64.whl (5.9 MB view details)

Uploaded CPython 3.9 macOS 13.0+ ARM64

File details

Details for the file deepsearch_glm-0.26.1.tar.gz.

File metadata

  • Download URL: deepsearch_glm-0.26.1.tar.gz
  • Upload date:
  • Size: 2.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.10.12 Linux/6.5.0-1025-azure

File hashes

Hashes for deepsearch_glm-0.26.1.tar.gz
Algorithm Hash digest
SHA256 c2938e99c4f9f48a8686d3c357778645ec76a78781c89d955720ef78502da830
MD5 6ddd67710bc0663cf84efe3ac55de58a
BLAKE2b-256 bfd3c1ed212b317350cf77c44aa48eb36cefbab9849130d15cda84856340d1ed

See more details on using hashes here.

File details

Details for the file deepsearch_glm-0.26.1-pp310-pypy310_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for deepsearch_glm-0.26.1-pp310-pypy310_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 84e10279d43bc62233ab67dcf831334303a39d55f4c6c308936e70bb9b6797c7
MD5 e7321203fc44898b95824707293fcf7e
BLAKE2b-256 3d6e951a4368bf6a18d675755ab160976479dac07497b53efed9362ab1845e17

See more details on using hashes here.

File details

Details for the file deepsearch_glm-0.26.1-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for deepsearch_glm-0.26.1-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 9e161df0771e1c5fafa16a5e081c9df83556f887a5d6dfd11ffe8a775bf21670
MD5 d9e3bae3c556b3ef434798e714b44c2b
BLAKE2b-256 5a0e822c6a0106d076f2bc2e6f0ac60d4c1c126b184c53d22db465833183ad79

See more details on using hashes here.

File details

Details for the file deepsearch_glm-0.26.1-cp313-cp313-win_amd64.whl.

File metadata

File hashes

Hashes for deepsearch_glm-0.26.1-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 5ad5c2b6fde9a15c10785a246b4e6f2b6fa88c7824fa619eb36b526f55a9049c
MD5 5b25f7175770239dc16898a9498efb3a
BLAKE2b-256 5fdac7089f465a3ed27b4408c6d0d135f0d933f8bbf29d52cf19741a8a1c5a07

See more details on using hashes here.

File details

Details for the file deepsearch_glm-0.26.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for deepsearch_glm-0.26.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c32ee40a2c4c13407e702bdc75b8a00a8ffeb45d0c966d0bb58deaf1f42b6b95
MD5 012e01897d7b9bca91a2acadb2b3a4e2
BLAKE2b-256 d9feed99cd0baba2c3017e3be66bf50ccdaf7bb21e036ebf54cc2e825140be5c

See more details on using hashes here.

File details

Details for the file deepsearch_glm-0.26.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for deepsearch_glm-0.26.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 09fede1e2e1df7d77f8f63898e1a5180bd43a623898b2b229561778a00ba99e9
MD5 591c52b8a44600534e94044089f600a7
BLAKE2b-256 a7ed37b5163199231df39f56db499efba44f1adc1a5dd628612b33acc353a463

See more details on using hashes here.

File details

Details for the file deepsearch_glm-0.26.1-cp313-cp313-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for deepsearch_glm-0.26.1-cp313-cp313-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 da90c145185ee7309fc938a2be33ff49166be0f1a4d84f00c796442ef71ae1b4
MD5 01ef5266a27ef24b7f8d121caeb80e20
BLAKE2b-256 2f3345166e748ef1e7431114edcd271b385d1e1c8244b3567d40628e5425230d

See more details on using hashes here.

File details

Details for the file deepsearch_glm-0.26.1-cp313-cp313-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for deepsearch_glm-0.26.1-cp313-cp313-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 973f247b41f08477fbaa26675d65f60fd4decf27239f62739027503c53510283
MD5 84561f0b4a7256ca8a8a5466afdd13de
BLAKE2b-256 a4b1017918b34c7091dfe84d26b020df2e82bf4bcd84a0869ae9e24b14e88413

See more details on using hashes here.

File details

Details for the file deepsearch_glm-0.26.1-cp313-cp313-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for deepsearch_glm-0.26.1-cp313-cp313-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 db29c65004737eb70d8200fb97c1bd5f88bcba900ace2e330b285d9f4f97e1d3
MD5 6ce862fbc1d7dd3ee3065261ea65af9a
BLAKE2b-256 58d7798fd10494de90767139968feb5a50f24723e662c8af8ea56341354ee677

See more details on using hashes here.

File details

Details for the file deepsearch_glm-0.26.1-cp313-cp313-macosx_13_0_arm64.whl.

File metadata

File hashes

Hashes for deepsearch_glm-0.26.1-cp313-cp313-macosx_13_0_arm64.whl
Algorithm Hash digest
SHA256 25436ef7e74fb79356e49c8dd7bdde96544b03dafbda463fece7dfa3a8b8cb2a
MD5 83f038601bb2be75ea1bc87f26263241
BLAKE2b-256 fed1f8039fe7a71f185c7348865ce3b466d41e75588d5c7abac7c0c1b6cd2f05

See more details on using hashes here.

File details

Details for the file deepsearch_glm-0.26.1-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for deepsearch_glm-0.26.1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 334ca76b798d223fc511af4f5a4f50b6e2279472ed57abe1bd13bc7808cda475
MD5 7ea244a3388797f8f15598d142d0a0d3
BLAKE2b-256 4a78652f7ee36a32677fc36854cfa54441cc0926f29d448bab12e43aa234f508

See more details on using hashes here.

File details

Details for the file deepsearch_glm-0.26.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for deepsearch_glm-0.26.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 350a96fd75a0a230934ba26cec543b6e507279a5c2aeedceabc9a1016546bef8
MD5 1be3191863e5c56a604b41c852b56726
BLAKE2b-256 92826e91371bb3053bf533cd0060e69d93fb4caea61ad3c749463d4f438d97cb

See more details on using hashes here.

File details

Details for the file deepsearch_glm-0.26.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for deepsearch_glm-0.26.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0859596d97ed77334c5cee703fd5ce29b1c500a88f4ab5b12b0e421ae3ba7176
MD5 87ef9b1cf0714f7a7939c5985383ca47
BLAKE2b-256 23f63cbd433e5d38d24fe848d915eb6d9aea2f3640827707a585537cc9ca1471

See more details on using hashes here.

File details

Details for the file deepsearch_glm-0.26.1-cp312-cp312-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for deepsearch_glm-0.26.1-cp312-cp312-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 8896954e8b0c4a48d99c041119c191359506f92b2868767ede9303765b91d10e
MD5 9d0a9983f0bce40f74f7dcf274859b9c
BLAKE2b-256 e0361f432e351346878d0d6a752992df6c9501feaffc15c7274e7fbfb9703b92

See more details on using hashes here.

File details

Details for the file deepsearch_glm-0.26.1-cp312-cp312-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for deepsearch_glm-0.26.1-cp312-cp312-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 ae6ec456e6c3c36a6f8e1607488fba00638a451ab2e0819fd6718c0ddd9e2973
MD5 bd6baec975250c2fa7bf713305c2b55e
BLAKE2b-256 a4b772981e85ce5ea6b2a0816b77d02b2852a70f1defc90b7aff27cb8257de3e

See more details on using hashes here.

File details

Details for the file deepsearch_glm-0.26.1-cp312-cp312-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for deepsearch_glm-0.26.1-cp312-cp312-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 17835432e33f9b4f953091cefb4cd7f0ec18bef22bf657135d95040dff51f475
MD5 11f561e8fc494c62f8a236808c109309
BLAKE2b-256 952500dfb2f6021bcba4bd52950e36807f94ff890dc3766c956c620a9501ab3e

See more details on using hashes here.

File details

Details for the file deepsearch_glm-0.26.1-cp312-cp312-macosx_13_0_arm64.whl.

File metadata

File hashes

Hashes for deepsearch_glm-0.26.1-cp312-cp312-macosx_13_0_arm64.whl
Algorithm Hash digest
SHA256 aee9f9e2f1d3da996faa289bfbdaef1f66c9e85b1d3a017230ac38eaf8cf24f8
MD5 78b05a858a3519df936fdb364350d869
BLAKE2b-256 ee8c6c3d8315f7477fdf87b5dce8dfd81ee3e7c581e7120a6f74b260e1b7697d

See more details on using hashes here.

File details

Details for the file deepsearch_glm-0.26.1-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for deepsearch_glm-0.26.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 7efb1cc1e7bc7e01b9d3fd9a38dcc7a34300c81c8c845b9f3cde2a7cbb8f7153
MD5 b49fece894785006f125dac1c8d2d901
BLAKE2b-256 6e391d3e5fc8ecf4b5b8f879579838edb8e0eb05c98b48567988ee97f086d8b4

See more details on using hashes here.

File details

Details for the file deepsearch_glm-0.26.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for deepsearch_glm-0.26.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 de15bf1191837248b6e90b530e17525333142b6f59153092eba87446f7472a00
MD5 c2fcb804102130f2774d8f58851f39bb
BLAKE2b-256 5c5aac8fef75bdbb28ee499d10f2f0f5bb522b4bc72348e21de8729523723e7b

See more details on using hashes here.

File details

Details for the file deepsearch_glm-0.26.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for deepsearch_glm-0.26.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0d66db72509b9b861bd8caa9629713984c360f28c83df990a4bb20370ba9584f
MD5 e8d0533e5700509d30e582eb473f76cc
BLAKE2b-256 d0c678e954f47d501d171ab33588dfba1009dd5a06dcd6339098a6ebc172b137

See more details on using hashes here.

File details

Details for the file deepsearch_glm-0.26.1-cp311-cp311-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for deepsearch_glm-0.26.1-cp311-cp311-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 934b59504224eda6de2607ce3a7c22c982c12320f99f773421a2083efc9ee80c
MD5 52e41cb1d635539ec42f49dc0ff34d95
BLAKE2b-256 74153d98f3913cd53029bfe08efadfbba640bb4760477007ec0d4e18d6da2226

See more details on using hashes here.

File details

Details for the file deepsearch_glm-0.26.1-cp311-cp311-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for deepsearch_glm-0.26.1-cp311-cp311-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 5ef920528c215ae0586efb880e886fbd388b490c64b17e64b2a6806a7a7c97da
MD5 fa24f0fea291786ad27c1e19cb671e2a
BLAKE2b-256 9ddfe020c620dcf6437fed21aa25c72868a77adb509613f3d506ecf816028130

See more details on using hashes here.

File details

Details for the file deepsearch_glm-0.26.1-cp311-cp311-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for deepsearch_glm-0.26.1-cp311-cp311-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 658d0c53b5a06a60917f4acccbcbca81eac0dd938fe1f601184b4d30634040ca
MD5 85fd758ddba419c03801ba6fd2960c33
BLAKE2b-256 9598eb38d572e3af6166534e1fd27cce896ab9d94364b7f56ab55ee573fdd6e3

See more details on using hashes here.

File details

Details for the file deepsearch_glm-0.26.1-cp311-cp311-macosx_13_0_arm64.whl.

File metadata

File hashes

Hashes for deepsearch_glm-0.26.1-cp311-cp311-macosx_13_0_arm64.whl
Algorithm Hash digest
SHA256 dcd89e19cd6ef0f23e87606e3e45342e3ded65d958a1ca324b524147e27dfe18
MD5 01f75fb43485a00290daa1a2a548376b
BLAKE2b-256 ca724b06d2336358fa445b4468139514e23e751b7bc03622898b238f59fa603c

See more details on using hashes here.

File details

Details for the file deepsearch_glm-0.26.1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for deepsearch_glm-0.26.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 5b619b2965306972a0a3057b7785452282ecfd656724b4ce0c62c1d659bd5f0a
MD5 3268592f45c883ac6ae76bdd358c21b4
BLAKE2b-256 fce59a1bbb61535d4397d2af3f7e9f1b76b0d03b937a21dde9379da93ff21839

See more details on using hashes here.

File details

Details for the file deepsearch_glm-0.26.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for deepsearch_glm-0.26.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a6755a00ff2d512fc5c7bbc8e84d6a3149c1e30df4074d46bca84ae24072535c
MD5 6ebd0ac28358c9139ace21949d0c6b92
BLAKE2b-256 46b9cc213c35c8741b59d7e871752f7fa6c388d328f30e2d4585116e0b9d4c0a

See more details on using hashes here.

File details

Details for the file deepsearch_glm-0.26.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for deepsearch_glm-0.26.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 878e8e6fd6440a8dc0db7415e37b5710fee912755bccd23b37a6456a9707ece3
MD5 47b6c4eba5f30621d205423df76ef302
BLAKE2b-256 6512b4f44105d7637d63021535e65f71ae9ae88e46e1855dca05929ba799e45f

See more details on using hashes here.

File details

Details for the file deepsearch_glm-0.26.1-cp310-cp310-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for deepsearch_glm-0.26.1-cp310-cp310-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 be8e4b790db4b1e178a92a793dededdf59209a577e7187968b084200604dac4e
MD5 1ddde9123e82376608d249e3301d0dfb
BLAKE2b-256 da8d6f52878b133c3a01d65481c5d3b7fc46411323e9c9e4238cbf6f6a9111eb

See more details on using hashes here.

File details

Details for the file deepsearch_glm-0.26.1-cp310-cp310-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for deepsearch_glm-0.26.1-cp310-cp310-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 20f3721194ebf5919a722809759ece53866eae2fc2a0c2b69bb0e9a4602efe09
MD5 63ef9b29ae4f0e938831257f2c27333a
BLAKE2b-256 9207ef37c37073b65bd1fe13f69673e5f2e1c46b06a1b87819e1d0eb4bcb3c6f

See more details on using hashes here.

File details

Details for the file deepsearch_glm-0.26.1-cp310-cp310-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for deepsearch_glm-0.26.1-cp310-cp310-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 33cf8dbf5d1c748d3060026a8c451162a822c138c538e74b4ca421feaa757957
MD5 6f9224a45b68a472836e491c574d222d
BLAKE2b-256 416cf999d75027a19a4bb46d6cc27ab91505474ac003a6fc83e415cd7939f1e2

See more details on using hashes here.

File details

Details for the file deepsearch_glm-0.26.1-cp310-cp310-macosx_13_0_arm64.whl.

File metadata

File hashes

Hashes for deepsearch_glm-0.26.1-cp310-cp310-macosx_13_0_arm64.whl
Algorithm Hash digest
SHA256 477a8783782416ddc9f2562b2e85aabb3dae15620fc92a065c50ac9c8a4f1a49
MD5 c788fa6a06411087ab55eeffd96e4d30
BLAKE2b-256 b5d07bad93a1c96ee305a120ef4c46c8b69377b4f7ed7ba199ff614006d5cd9b

See more details on using hashes here.

File details

Details for the file deepsearch_glm-0.26.1-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for deepsearch_glm-0.26.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 3a9a47e6558733c66f88b3ff29417ce5ea89e6194e713e9acc93a37b8b763c35
MD5 977343dc44f133b3e2947be45eea5f33
BLAKE2b-256 d9dbe23ec6b5cdc23ffb26ced840f365717b1e9f62d6adc184b596b60d4ece96

See more details on using hashes here.

File details

Details for the file deepsearch_glm-0.26.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for deepsearch_glm-0.26.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3131efd1cd015e883cf95779a0efd8233563b5a4e79516ab97cb2f6af2d07f45
MD5 37db240fd40dcb74e94a0d923f7ced31
BLAKE2b-256 eda7e6ccb7df518cd5a7715efc206d12f7ef1a7cb2e23441f02448e25d1f67f2

See more details on using hashes here.

File details

Details for the file deepsearch_glm-0.26.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for deepsearch_glm-0.26.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2f1c0b5acdc792d5e806cff3989b514509f988d53b6a493d18c2a32f5e553f30
MD5 ef52a3809b88891f9d54cf1bfb03b60d
BLAKE2b-256 0d0cfd857d290aacb5914f25dbb8afaf8271d68b7bb5217738dec1a5abd7ce57

See more details on using hashes here.

File details

Details for the file deepsearch_glm-0.26.1-cp39-cp39-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for deepsearch_glm-0.26.1-cp39-cp39-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 67f16e696ebee7e5c414d9142880783f53a89643c76b1a53e2c65aaed44868ec
MD5 a5b4d3afaaacb81f936399a2d4f743f1
BLAKE2b-256 18d50ceebf351e07a1c36e56f679fb78e29090c30c3323fe06da0670540f81da

See more details on using hashes here.

File details

Details for the file deepsearch_glm-0.26.1-cp39-cp39-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for deepsearch_glm-0.26.1-cp39-cp39-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 9f761bcfeac2b47001b4c9ea7d321d9ed2036c5ae87537031fdd6e74cd99890d
MD5 488b09c892c0b980c37703cf364d3edf
BLAKE2b-256 398f7fa20de098efb64c921add6807ad91147f67a9e9c0f97895d10343c4559f

See more details on using hashes here.

File details

Details for the file deepsearch_glm-0.26.1-cp39-cp39-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for deepsearch_glm-0.26.1-cp39-cp39-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 5f20628d1eb46586068459f2a3f898a97204887020281d4474e02525b9fbdb2c
MD5 9d42a2cab17f14c1a079d04afcb56eb0
BLAKE2b-256 9f3e9a857b187214918c1c876cbb2da6f6595771b693074449e5fb14f272fa9f

See more details on using hashes here.

File details

Details for the file deepsearch_glm-0.26.1-cp39-cp39-macosx_13_0_arm64.whl.

File metadata

File hashes

Hashes for deepsearch_glm-0.26.1-cp39-cp39-macosx_13_0_arm64.whl
Algorithm Hash digest
SHA256 ad7504151931f238d5f724761b1d6d9ac0aeb8c5c8d9c41f0b238243f41ac75e
MD5 0612ae3be5632f7a737afd54ba0794eb
BLAKE2b-256 7512a9a9fb20e6edcf7715885dc37478df2df2caaf1e8fed13eb7afc72c410c1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page