Skip to main content

Graph Language Models

Project description

Graph Language Models

PyPI version PyPI - Python Version Poetry Code style: black Pybind11 Platforms License MIT PyPI - Downloads

Getting Started

Finding entities and relations via NLP on text and documents

To get easily started, simply install the deepsearch-glm package from PyPi. This can be done using the traditional pip install deepsearch-glm or via poetry poetry add deepsearch-glm.

Below, you can find the code-snippet to process pieces of text,

from deepsearch_glm.utils.load_pretrained_models import load_pretrained_nlp_models
from deepsearch_glm.nlp_utils import init_nlp_model, print_on_shell

load_pretrained_nlp_models(force=False, verbose=False)
mdl = init_nlp_model()

# from Wikipedia (https://en.wikipedia.org/wiki/France)
text = """
France (French: [fʁɑ̃s] Listen), officially the French Republic
(French: République française [ʁepyblik fʁɑ̃sɛz]),[14] is a country
located primarily in Western Europe. It also includes overseas regions
and territories in the Americas and the Atlantic, Pacific and Indian
Oceans,[XII] giving it one of the largest discontiguous exclusive
economic zones in the world.
"""

res = mdl.apply_on_text(text)
print_on_shell(text, res)

The last command will print the pandas dataframes on the shell and provides the following output,

text:

   #France (French: [fʁɑ̃s] Listen), officially the French Republic
(French: République française [ʁepyblik fʁɑ̃sɛz]),[14] is a country
located primarily in Western Europe. It also includes overseas regions
and territories in the Americas and the Atlantic, Pacific and Indian
Oceans, giving it one of the largest discontiguous exclusive economic
zones in the world.

properties:

         type label  confidence
0  language    en    0.897559

instances:

  type         subtype               subj_path      char_i    char_j  original
-----------  --------------------  -----------  --------  --------  ---------------------------------------------------------------------
sentence                           #                   1       180  France (French: [fʁɑ̃s] Listen), officially the French Republic
                                                                    (French: République française [ʁepyblik fʁɑ̃sɛz]),[14] is a country
                                                                    located primarily in Western Europe.
term         single-term           #                   1         8  #France
expression   wtoken-concatenation  #                   1         8  #France
parenthesis  round brackets        #                   9        36  (French: [fʁɑ̃s] Listen)
expression   wtoken-concatenation  #                  18        28  [fʁɑ̃s]
term         single-term           #                  29        35  Listen
term         single-term           #                  53        68  French Republic
parenthesis  round brackets        #                  69       125  (French: République française [ʁepyblik fʁɑ̃sɛz])
term         single-term           #                  78       100  République française
term         single-term           #                 112       124  fʁɑ̃sɛz]
parenthesis  reference             #                 126       130  [14]
numval       ival                  #                 127       129  14
term         single-term           #                 136       143  country
term         single-term           #                 165       179  Western Europe
sentence                           #                 181       373  It also includes overseas regions and territories in the Americas and
                                                                    the Atlantic, Pacific and Indian Oceans, giving it one of the largest
                                                                    discontiguous exclusive economic zones in the world.
term         single-term           #                 198       214  overseas regions
term         enum-term-mark-3      #                 207       230  regions and territories
term         single-term           #                 219       230  territories
term         single-term           #                 238       246  Americas
term         enum-term-mark-4      #                 255       290  Atlantic, Pacific and Indian Oceans
term         single-term           #                 255       263  Atlantic
term         single-term           #                 265       272  Pacific
term         single-term           #                 277       290  Indian Oceans
term         single-term           #                 313       359  largest discontiguous exclusive economic zones
term         single-term           #                 367       372  world

The NLP can also be applied on entire documents which were converted using Deep Search. A simple example is shown below,

from deepsearch_glm.utils.load_pretrained_models import load_pretrained_nlp_models
from deepsearch_glm.nlp_utils import init_nlp_model, print_on_shell

load_pretrained_nlp_models(force=False, verbose=False)
mdl = init_nlp_model()

with open("<path-to-json-file-of-converted-pdf-doc>", "r") as fr:
    doc = json.load(fr)

enriched_doc = mdl.apply_on_doc(doc)

Creating Graphs from NLP entities and relations in document collections

To create graphs, you need two ingredients, namely,

  1. a collection of text or documents
  2. a set of NLP models that provide entities and relations

Below is a code snippet to create the graph using these basic ingredients,

odir = "<ouput-dir-to-save-graph>"
json_files = ["json-file of converted PDF document"]
model_names = "<list of NLP models:langauge;term;verb;abbreviation>"

glm = create_glm_from_docs(odir, json_files, model_names)	

Querying Graphs

TBD

Install for development

Python installation

To use the python interface, first make sure all dependencies are installed. We use poetry for that. To install all the dependent python packages and get the python bindings, simply execute,

poetry install --all-extras

CXX compilation

To compile from scratch, simply run the following command in the deepsearch-glm root folder to create the build directory,

cmake -B ./build; 

Next, compile the code from scratch,

cmake --build ./build -j

Run using the Python Interface

NLP and GLM examples

Note: Some of the examples require to convert PDF documents with Deep Search. For this to run, it is required to install the deepsearch-toolkit package. You can install it with pip install deepsearch-glm[toolkit].

To run the examples, simply do execute the scripts as poetry run python <script> <input>. Examples are,

  1. apply NLP on document(s)
poetry run python ./deepsearch_glm/nlp_apply_on_docs.py --pdf './data/documents/articles/2305.*.pdf' --models 'language;term'
  1. analyse NLP on document(s)
poetry run python ./deepsearch_glm/nlp_apply_on_docs.py --json './data/documents/articles/2305.*.nlp.json' 
  1. create GLM from document(s)
poetry run python ./deepsearch_glm/glm_create_from_docs.py --pdf ./data/documents/reports/2022-ibm-annual-report.pdf

Deep Search utilities

To use the Deep Search capabilities, it is required to install the deepsearch-toolkit package. You can install it with pip install deepsearch-glm[toolkit].

  1. Query and download document(s)
poetry run python ./deepsearch_glm/utils/ds_query.py --index patent-uspto --query "\"global warming potential\" AND \"etching\""
  1. Converting PDF document(s) into JSON
poetry run python ./deepsearch_glm/utils/ds_convert.py --pdf './data/documents/articles/2305.*.pdf'"

Run using CXX executables

If you like to be bare-bones, you can also use the executables for NLP and GLM's directly. In general, we follow a simple scheme of the form

./nlp.exe -m <mode> -c <JSON-config file>
./glm.exe -m <mode> -c <JSON-config file>

In both cases, the modes can be queried directly via the -h or --help

./nlp.exe -h
./glm.exe -h

and the configuration files can be generated,

./nlp.exe -m create-configs
./glm.exe -m create-configs

Natural Language Processing (NLP)

After you have generated the configuration files (see above), you can

  1. train simple NLP models
./nlp.exe -m train -c nlp_train_config.json
  1. leverage pre-trained models
./nlp.exe -m predict -c nlp_predict.example.json

Graph Language Models (GLM)

  1. create a GLM
./glm.exe -m create -c glm_config_create.json
  1. explore interactively the GLM
./glm.exe -m explore -c glm_config_explore.json

Testing

To run the tests, simply execute (after installation),

poetry run pytest ./tests -vvv -s

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

deepsearch_glm-1.0.0.tar.gz (2.4 MB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

deepsearch_glm-1.0.0-pp310-pypy310_pp73-win_amd64.whl (14.6 MB view details)

Uploaded PyPyWindows x86-64

deepsearch_glm-1.0.0-pp39-pypy39_pp73-win_amd64.whl (14.6 MB view details)

Uploaded PyPyWindows x86-64

deepsearch_glm-1.0.0-cp313-cp313-win_amd64.whl (7.9 MB view details)

Uploaded CPython 3.13Windows x86-64

deepsearch_glm-1.0.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.8 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ x86-64

deepsearch_glm-1.0.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (7.4 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ ARM64

deepsearch_glm-1.0.0-cp313-cp313-macosx_14_0_arm64.whl (5.9 MB view details)

Uploaded CPython 3.13macOS 14.0+ ARM64

deepsearch_glm-1.0.0-cp313-cp313-macosx_13_0_x86_64.whl (6.3 MB view details)

Uploaded CPython 3.13macOS 13.0+ x86-64

deepsearch_glm-1.0.0-cp312-cp312-win_amd64.whl (7.9 MB view details)

Uploaded CPython 3.12Windows x86-64

deepsearch_glm-1.0.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.8 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64

deepsearch_glm-1.0.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (7.4 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ ARM64

deepsearch_glm-1.0.0-cp312-cp312-macosx_14_0_arm64.whl (5.9 MB view details)

Uploaded CPython 3.12macOS 14.0+ ARM64

deepsearch_glm-1.0.0-cp312-cp312-macosx_13_0_x86_64.whl (6.3 MB view details)

Uploaded CPython 3.12macOS 13.0+ x86-64

deepsearch_glm-1.0.0-cp311-cp311-win_amd64.whl (7.9 MB view details)

Uploaded CPython 3.11Windows x86-64

deepsearch_glm-1.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.8 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

deepsearch_glm-1.0.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (7.4 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ ARM64

deepsearch_glm-1.0.0-cp311-cp311-macosx_14_0_arm64.whl (6.0 MB view details)

Uploaded CPython 3.11macOS 14.0+ ARM64

deepsearch_glm-1.0.0-cp311-cp311-macosx_13_0_x86_64.whl (6.3 MB view details)

Uploaded CPython 3.11macOS 13.0+ x86-64

deepsearch_glm-1.0.0-cp310-cp310-win_amd64.whl (7.9 MB view details)

Uploaded CPython 3.10Windows x86-64

deepsearch_glm-1.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.8 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

deepsearch_glm-1.0.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (7.4 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ ARM64

deepsearch_glm-1.0.0-cp310-cp310-macosx_14_0_arm64.whl (5.9 MB view details)

Uploaded CPython 3.10macOS 14.0+ ARM64

deepsearch_glm-1.0.0-cp310-cp310-macosx_13_0_x86_64.whl (6.3 MB view details)

Uploaded CPython 3.10macOS 13.0+ x86-64

deepsearch_glm-1.0.0-cp39-cp39-win_amd64.whl (7.9 MB view details)

Uploaded CPython 3.9Windows x86-64

deepsearch_glm-1.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.8 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

deepsearch_glm-1.0.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (7.4 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ ARM64

deepsearch_glm-1.0.0-cp39-cp39-macosx_14_0_arm64.whl (5.9 MB view details)

Uploaded CPython 3.9macOS 14.0+ ARM64

deepsearch_glm-1.0.0-cp39-cp39-macosx_13_0_x86_64.whl (6.3 MB view details)

Uploaded CPython 3.9macOS 13.0+ x86-64

File details

Details for the file deepsearch_glm-1.0.0.tar.gz.

File metadata

  • Download URL: deepsearch_glm-1.0.0.tar.gz
  • Upload date:
  • Size: 2.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for deepsearch_glm-1.0.0.tar.gz
Algorithm Hash digest
SHA256 e8dce88ac519a693c260f28bd3c4ec409811e65ade84fb508f6c6e37ca065e62
MD5 a3000b846a5b4267a3a2bdc9c9842f7d
BLAKE2b-256 73d5a907234e57f5c4f6480c9ddbc3cdacc47f727c768e502be3d361719fac4e

See more details on using hashes here.

File details

Details for the file deepsearch_glm-1.0.0-pp310-pypy310_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for deepsearch_glm-1.0.0-pp310-pypy310_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 e2315cc4ffe7032dada294a0cd72a47dbc6c0121fd07d4b5719f9a9e9519d091
MD5 9e2faa312cf09c6799fd3c2ea71ade1e
BLAKE2b-256 1fcde6507d924aa69e9647f917ed671e2d62e19e41d4f120a15fcbb583661667

See more details on using hashes here.

File details

Details for the file deepsearch_glm-1.0.0-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for deepsearch_glm-1.0.0-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 707b92f51bacbd0f799ee3351474766bf916ef82f97c1bcc0e7696532ba03535
MD5 dc0e66a7a26e388b80e827094aaf270c
BLAKE2b-256 76f603a9d2510e8a14fcbe92f76694e7e0f0bceb49737d3fe8a079988ea207a3

See more details on using hashes here.

File details

Details for the file deepsearch_glm-1.0.0-cp313-cp313-win_amd64.whl.

File metadata

File hashes

Hashes for deepsearch_glm-1.0.0-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 962f393dcec2204de1a5cb0f635c65258bde2424ad2d4e0f5df770139c3958de
MD5 0c3299e4480d7f8bf34b71ce27541f9d
BLAKE2b-256 010a7c3cf75bad38a8d6ff3842b78b3263dd81ad4eaf1d859f4b8e1ab465cad5

See more details on using hashes here.

File details

Details for the file deepsearch_glm-1.0.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for deepsearch_glm-1.0.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 62c1c0ea0a544219da15c017632f9e0be116ecdc335b865c6c5760429557fe23
MD5 697ae4439983c25ba720b19752b0efc2
BLAKE2b-256 176ac2c4eaa4470b78dde6c03f055cbb09f3f7f15b8a6ff38f5bea5180339e6f

See more details on using hashes here.

File details

Details for the file deepsearch_glm-1.0.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for deepsearch_glm-1.0.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7f18d1ee68a0479592e0c714e6cbf9e2d0fa8edd692d580da64431c84cbef5c2
MD5 6b889986379f67c6bcec10e0cae72745
BLAKE2b-256 830f42b5a4aa798acbc6309d748435b006c489e58102b6cb2278e7b8f0194743

See more details on using hashes here.

File details

Details for the file deepsearch_glm-1.0.0-cp313-cp313-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for deepsearch_glm-1.0.0-cp313-cp313-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 3199093a9472e5756214b9b6563f827c19c001c7dd8ae00e03eed1140c12930d
MD5 7179d588b761e22af73337ed6c939c00
BLAKE2b-256 bafbf5f9787876b67ce83d5afa4903901be9f8071530bc0706dc2228afc0b6c0

See more details on using hashes here.

File details

Details for the file deepsearch_glm-1.0.0-cp313-cp313-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for deepsearch_glm-1.0.0-cp313-cp313-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 7d558e8b365c27ee665d0589165fd074fb252c73715f9cc6aeb4304a63683f37
MD5 6e11cc2f07d088a9b20a6cf51c239270
BLAKE2b-256 380608c5fd0e1144c2c8d76d06da1545a9cf589278a37f8b9e6235b5b416eb52

See more details on using hashes here.

File details

Details for the file deepsearch_glm-1.0.0-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for deepsearch_glm-1.0.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 9d61f66048e6ab60fe9f84c823fd593bf8517755833bd9efb59156d77a2b42d0
MD5 d9802fa3794680e8aff3695bb3551855
BLAKE2b-256 ab97ffb2bb5d2432c7b0e9f3a3e6b5873fbcd6e19e82b620393bfb8e01bdecb1

See more details on using hashes here.

File details

Details for the file deepsearch_glm-1.0.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for deepsearch_glm-1.0.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1b003bf457fce61ea4de79e2d7d0228a1ae349f677eb6570e745f79d4429804f
MD5 fcd1aa808f68423a9e9ebb4ff3db076b
BLAKE2b-256 3a7e2b7db77ff02fe9eec41f3605fcd72e3eb4e6b48561b344d432b417a75cfe

See more details on using hashes here.

File details

Details for the file deepsearch_glm-1.0.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for deepsearch_glm-1.0.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c6211eaf497ad7cfcb68f80f9b5387940be0204fe149a9fc03988a95145f410a
MD5 02d1a6b6dafe04d781fe71b9e9e0be57
BLAKE2b-256 21b1eb0cd0db50d05f2d7a510a77960e85e6caee727eb3d931ed0ec067917813

See more details on using hashes here.

File details

Details for the file deepsearch_glm-1.0.0-cp312-cp312-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for deepsearch_glm-1.0.0-cp312-cp312-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 51f5c6522f60ba73eb12eeb7217bd98d871ba7c078337a4059d05878d8baf2d6
MD5 7637e8969f69c7d45a915125715254b1
BLAKE2b-256 207cbf1e9c458705c7143c6630cb6847554ad694d25dc6f1f038512b9c86160a

See more details on using hashes here.

File details

Details for the file deepsearch_glm-1.0.0-cp312-cp312-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for deepsearch_glm-1.0.0-cp312-cp312-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 56d9575df9eceb8c2ae33e3d15e133924cc195714c3d268599b6f8414c1f6bb8
MD5 709b3d2fbb30c9d2aa95e36215fb9b86
BLAKE2b-256 60ca6adbadc979910b11594cd0242f1991942c22528eead431d47de064ac2860

See more details on using hashes here.

File details

Details for the file deepsearch_glm-1.0.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for deepsearch_glm-1.0.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 807faf13eb0deea55a1951d479a85d5e20de0ff8b2e0b57b2f7939552759a426
MD5 5dedd8ad6c2f1b64495e4b21625738be
BLAKE2b-256 3dd3e5ebdda9cee8a1c846e6a960a0e5b97624aff2f248c2bc89ae490b9a1342

See more details on using hashes here.

File details

Details for the file deepsearch_glm-1.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for deepsearch_glm-1.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6f0e1efe9af0d28e9b473fe599246deb3a0be7c3d546a478da284747144d086a
MD5 caed3116e33d50f6e02e3bfcbe1b418f
BLAKE2b-256 c3cd9ffb616d347d568f868f47585b3261c16e277aa7b37740e8720eee71c539

See more details on using hashes here.

File details

Details for the file deepsearch_glm-1.0.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for deepsearch_glm-1.0.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0417a2ae998e1709f03458cfb9adb55423bb1328224eb055300796baa757879f
MD5 0f36097c9397495bfb99c664fa115667
BLAKE2b-256 0cc63680318e66df278fa7f0811dc862d6cb3c328ce168b4f36736eb77120b6d

See more details on using hashes here.

File details

Details for the file deepsearch_glm-1.0.0-cp311-cp311-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for deepsearch_glm-1.0.0-cp311-cp311-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 a5702205677b768b51f881d15d933370f6ef3c826dfac3b9aa0b904d2e6c495a
MD5 93157aad34c7ef18674ce0332f00618c
BLAKE2b-256 17374d8514d8ef851e44513a71f675a7ebb373f109aece38e324c7d444ced20c

See more details on using hashes here.

File details

Details for the file deepsearch_glm-1.0.0-cp311-cp311-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for deepsearch_glm-1.0.0-cp311-cp311-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 e64d94ff5209f0a11e8c75c6b28b033ef27b95a22c2fbcbd945e7fe8cc421545
MD5 81fd17829f6fb21ba6c38f71deec1980
BLAKE2b-256 41f78e8dd9738554f97522b59b0a6d7680ccf2d527bd3471ec4aa4e52acf552a

See more details on using hashes here.

File details

Details for the file deepsearch_glm-1.0.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for deepsearch_glm-1.0.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 9f2872dd573cd2206ce7f9e2e6016c38b66d9ecbd983283ff5e8c6023813c311
MD5 8f83c15a55fcad39b685a52fe3c709e9
BLAKE2b-256 61f4e39a5090a2bf0d641449918865566ad5adabef156993a922bdbf4a3ebb60

See more details on using hashes here.

File details

Details for the file deepsearch_glm-1.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for deepsearch_glm-1.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 143de0fd111a570be12935d8799a2715fe1775d4dc4e256337860b429cee5d36
MD5 68d93ff13b60f941cb513ac81c658fce
BLAKE2b-256 e8e256b5e7ae3ccc4d8ee758427c8c9a403c985e250a468c53538c269897bef2

See more details on using hashes here.

File details

Details for the file deepsearch_glm-1.0.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for deepsearch_glm-1.0.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9d77d3d94d49641888aa15f3ad23e81158e791aa9d9608dd8168dc71788e56f3
MD5 ccd0c01ae2321d357fd325a33a3eaab1
BLAKE2b-256 9e1a5c37a98f27644fd02bc447df651e8d5ce484cd6ce7cb178218625b4de5bc

See more details on using hashes here.

File details

Details for the file deepsearch_glm-1.0.0-cp310-cp310-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for deepsearch_glm-1.0.0-cp310-cp310-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 ff46e352e96a2f56ce7ae4fdf04b271ee841c29ff159b1dec0e5ecaaadba8d4d
MD5 bcbe295b9e6effd4398d64fc3f69e389
BLAKE2b-256 452a1e95260a712948a21b74dcb239032d9e612f7e1a273657008655749f4115

See more details on using hashes here.

File details

Details for the file deepsearch_glm-1.0.0-cp310-cp310-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for deepsearch_glm-1.0.0-cp310-cp310-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 94792b57df7a1c4ba8b47ebd8f36ea0a090d4f27a4fba39bd7b166b6b537260a
MD5 1c436d29cd07a5f8efed96e6ede65ace
BLAKE2b-256 40654b2013784d5ed8d3664a2efa61f15600c8bf090766b0363c036d78aca550

See more details on using hashes here.

File details

Details for the file deepsearch_glm-1.0.0-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for deepsearch_glm-1.0.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 25bb899317f6af062083daa578f343c93a2b12755c174549fb58596de0bc7b9d
MD5 656ae1b43fc2ff0e930d452cfc4a75fd
BLAKE2b-256 ce1d390a86ed84981f9a41680cab523f4bbf4490750bf60359f2a05e6e1d7e73

See more details on using hashes here.

File details

Details for the file deepsearch_glm-1.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for deepsearch_glm-1.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 105c50b2e5b8f9a6ea5fb0b755a9cd38a1fb12ecb07f1a13d1290ad3cdfeaa90
MD5 05b79e56658f116d4a87158f607e3533
BLAKE2b-256 0a6e42e650bc59d05dbc00eab8a67ceb9bc61f097cf63f5f27166b3412a48390

See more details on using hashes here.

File details

Details for the file deepsearch_glm-1.0.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for deepsearch_glm-1.0.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1c0953d1983e902327f0cc152ff8267056ec2699106eefc70a41eec6eebdbe1b
MD5 11e5dd96c785988e1ca837f754038ea6
BLAKE2b-256 2b56ee219a324797a47206fe60009a22eff3d78fe3f5715c8a41f607addae95b

See more details on using hashes here.

File details

Details for the file deepsearch_glm-1.0.0-cp39-cp39-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for deepsearch_glm-1.0.0-cp39-cp39-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 748d077a4cacd714ff23a095c873549c176fa5ffe1a656be1bd11873148e58db
MD5 dcf608d45273285d31a99646dd9bb8b8
BLAKE2b-256 2f01296a4a988f033926890bc97e9e5983336855ca984ab8a8abe172a640a291

See more details on using hashes here.

File details

Details for the file deepsearch_glm-1.0.0-cp39-cp39-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for deepsearch_glm-1.0.0-cp39-cp39-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 4d328336950975c583d318a70e3511075d1ac1c599c2090a2a7928a4662fe8f2
MD5 1a682977b386a36933b5a517a11c9e76
BLAKE2b-256 7b53f6895766db9c3ef0c25bcf5a09b1a9390c23acad447720ddc6c6e163cf05

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page