Skip to main content

Graph Language Models

Project description

Graph Language Models

build tests

License MIT Code style: black

PyPI version PyPI - Python Version

PyPI - Downloads

Getting Started

Finding entities and relations via NLP on text and documents

To get easily started, simply install the deepsearch-glm package from PyPi. This can be done using the traditional pip install deepsearch-glm or via poetry poetry add deepsearch-glm.

Below, you can find the code-snippet to process pieces of text,

from deepsearch_glm.utils.load_pretrained_models import load_pretrained_nlp_models
from deepsearch_glm.nlp_utils import init_nlp_model, print_on_shell

load_pretrained_nlp_models(force=False, verbose=False)
mdl = init_nlp_model()

# from Wikipedia (https://en.wikipedia.org/wiki/France)
text = """
France (French: [fʁɑ̃s] Listen), officially the French Republic
(French: République française [ʁepyblik fʁɑ̃sɛz]),[14] is a country
located primarily in Western Europe. It also includes overseas regions
and territories in the Americas and the Atlantic, Pacific and Indian
Oceans,[XII] giving it one of the largest discontiguous exclusive
economic zones in the world.
"""

res = mdl.apply_on_text(text)
print_on_shell(text, res)

The last command will print the pandas dataframes on the shell and provides the following output,

text:

   #France (French: [fʁɑ̃s] Listen), officially the French Republic
(French: République française [ʁepyblik fʁɑ̃sɛz]),[14] is a country
located primarily in Western Europe. It also includes overseas regions
and territories in the Americas and the Atlantic, Pacific and Indian
Oceans, giving it one of the largest discontiguous exclusive economic
zones in the world.

properties:

         type label  confidence
0  language    en    0.897559

instances:

  type         subtype               subj_path      char_i    char_j  original
-----------  --------------------  -----------  --------  --------  ---------------------------------------------------------------------
sentence                           #                   1       180  France (French: [fʁɑ̃s] Listen), officially the French Republic
                                                                    (French: République française [ʁepyblik fʁɑ̃sɛz]),[14] is a country
                                                                    located primarily in Western Europe.
term         single-term           #                   1         8  #France
expression   wtoken-concatenation  #                   1         8  #France
parenthesis  round brackets        #                   9        36  (French: [fʁɑ̃s] Listen)
expression   wtoken-concatenation  #                  18        28  [fʁɑ̃s]
term         single-term           #                  29        35  Listen
term         single-term           #                  53        68  French Republic
parenthesis  round brackets        #                  69       125  (French: République française [ʁepyblik fʁɑ̃sɛz])
term         single-term           #                  78       100  République française
term         single-term           #                 112       124  fʁɑ̃sɛz]
parenthesis  reference             #                 126       130  [14]
numval       ival                  #                 127       129  14
term         single-term           #                 136       143  country
term         single-term           #                 165       179  Western Europe
sentence                           #                 181       373  It also includes overseas regions and territories in the Americas and
                                                                    the Atlantic, Pacific and Indian Oceans, giving it one of the largest
                                                                    discontiguous exclusive economic zones in the world.
term         single-term           #                 198       214  overseas regions
term         enum-term-mark-3      #                 207       230  regions and territories
term         single-term           #                 219       230  territories
term         single-term           #                 238       246  Americas
term         enum-term-mark-4      #                 255       290  Atlantic, Pacific and Indian Oceans
term         single-term           #                 255       263  Atlantic
term         single-term           #                 265       272  Pacific
term         single-term           #                 277       290  Indian Oceans
term         single-term           #                 313       359  largest discontiguous exclusive economic zones
term         single-term           #                 367       372  world

The NLP can also be applied on entire documents which were converted using Deep Search. A simple example is shown below,

from deepsearch_glm.utils.load_pretrained_models import load_pretrained_nlp_models
from deepsearch_glm.nlp_utils import init_nlp_model, print_on_shell

load_pretrained_nlp_models(force=False, verbose=False)
mdl = init_nlp_model()

with open("<path-to-json-file-of-converted-pdf-doc>", "r") as fr:
    doc = json.load(fr)

enriched_doc = mdl.apply_on_doc(doc)

Creating Graphs from NLP entities and relations in document collections

To create graphs, you need two ingredients, namely,

  1. a collection of text or documents
  2. a set of NLP models that provide entities and relations

Below is a code snippet to create the graph using these basic ingredients,

odir = "<ouput-dir-to-save-graph>"
json_files = ["json-file of converted PDF document"]
model_names = "<list of NLP models:langauge;term;verb;abbreviation>"

glm = create_glm_from_docs(odir, json_files, model_names)	

Querying Graphs

TBD

Install for development

Python installation

To use the python interface, first make sure all dependencies are installed. We use poetry for that. To install all the dependent python packages and get the python bindings, simply execute,

poetry install --all-extras

CXX compilation

To compile from scratch, simply run the following command in the deepsearch-glm root folder to create the build directory,

cmake -B ./build; 

Next, compile the code from scratch,

cmake --build ./build -j

Run using the Python Interface

NLP and GLM examples

Note: Some of the examples require to convert PDF documents with Deep Search. For this to run, it is required to install the deepsearch-toolkit package. You can install it with pip install deepsearch-glm[toolkit].

To run the examples, simply do execute the scripts as poetry run python <script> <input>. Examples are,

  1. apply NLP on document(s)
poetry run python ./deepsearch_glm/nlp_apply_on_docs.py --pdf './data/documents/articles/2305.*.pdf' --models 'language;term'
  1. analyse NLP on document(s)
poetry run python ./deepsearch_glm/nlp_apply_on_docs.py --json './data/documents/articles/2305.*.nlp.json' 
  1. create GLM from document(s)
poetry run python ./deepsearch_glm/glm_create_from_docs.py --pdf ./data/documents/reports/2022-ibm-annual-report.pdf

Deep Search utilities

To use the Deep Search capabilities, it is required to install the deepsearch-toolkit package. You can install it with pip install deepsearch-glm[toolkit].

  1. Query and download document(s)
poetry run python ./deepsearch_glm/utils/ds_query.py --index patent-uspto --query "\"global warming potential\" AND \"etching\""
  1. Converting PDF document(s) into JSON
poetry run python ./deepsearch_glm/utils/ds_convert.py --pdf './data/documents/articles/2305.*.pdf'"

Run using CXX executables

If you like to be bare-bones, you can also use the executables for NLP and GLM's directly. In general, we follow a simple scheme of the form

./nlp.exe -m <mode> -c <JSON-config file>
./glm.exe -m <mode> -c <JSON-config file>

In both cases, the modes can be queried directly via the -h or --help

./nlp.exe -h
./glm.exe -h

and the configuration files can be generated,

./nlp.exe -m create-configs
./glm.exe -m create-configs

Natural Language Processing (NLP)

After you have generated the configuration files (see above), you can

  1. train simple NLP models
./nlp.exe -m train -c nlp_train_config.json
  1. leverage pre-trained models
./nlp.exe -m predict -c nlp_predict.example.json

Graph Language Models (GLM)

  1. create a GLM
./glm.exe -m create -c glm_config_create.json
  1. explore interactively the GLM
./glm.exe -m explore -c glm_config_explore.json

Testing

To run the tests, simply execute (after installation),

poetry run pytest ./tests -vvv -s

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

deepsearch_glm-0.21.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.6 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

deepsearch_glm-0.21.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (7.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

deepsearch_glm-0.21.0-cp312-cp312-macosx_14_0_x86_64.whl (6.3 MB view details)

Uploaded CPython 3.12 macOS 14.0+ x86-64

deepsearch_glm-0.21.0-cp312-cp312-macosx_14_0_arm64.whl (5.9 MB view details)

Uploaded CPython 3.12 macOS 14.0+ ARM64

deepsearch_glm-0.21.0-cp312-cp312-macosx_13_0_x86_64.whl (6.3 MB view details)

Uploaded CPython 3.12 macOS 13.0+ x86-64

deepsearch_glm-0.21.0-cp312-cp312-macosx_13_0_arm64.whl (5.9 MB view details)

Uploaded CPython 3.12 macOS 13.0+ ARM64

deepsearch_glm-0.21.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

deepsearch_glm-0.21.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (7.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

deepsearch_glm-0.21.0-cp311-cp311-macosx_14_0_x86_64.whl (6.3 MB view details)

Uploaded CPython 3.11 macOS 14.0+ x86-64

deepsearch_glm-0.21.0-cp311-cp311-macosx_14_0_arm64.whl (5.9 MB view details)

Uploaded CPython 3.11 macOS 14.0+ ARM64

deepsearch_glm-0.21.0-cp311-cp311-macosx_13_0_x86_64.whl (6.3 MB view details)

Uploaded CPython 3.11 macOS 13.0+ x86-64

deepsearch_glm-0.21.0-cp311-cp311-macosx_13_0_arm64.whl (5.9 MB view details)

Uploaded CPython 3.11 macOS 13.0+ ARM64

deepsearch_glm-0.21.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

deepsearch_glm-0.21.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (7.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

deepsearch_glm-0.21.0-cp310-cp310-macosx_14_0_x86_64.whl (6.3 MB view details)

Uploaded CPython 3.10 macOS 14.0+ x86-64

deepsearch_glm-0.21.0-cp310-cp310-macosx_14_0_arm64.whl (5.9 MB view details)

Uploaded CPython 3.10 macOS 14.0+ ARM64

deepsearch_glm-0.21.0-cp310-cp310-macosx_13_0_x86_64.whl (6.3 MB view details)

Uploaded CPython 3.10 macOS 13.0+ x86-64

deepsearch_glm-0.21.0-cp310-cp310-macosx_13_0_arm64.whl (5.9 MB view details)

Uploaded CPython 3.10 macOS 13.0+ ARM64

deepsearch_glm-0.21.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

deepsearch_glm-0.21.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (7.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

deepsearch_glm-0.21.0-cp39-cp39-macosx_14_0_x86_64.whl (6.3 MB view details)

Uploaded CPython 3.9 macOS 14.0+ x86-64

deepsearch_glm-0.21.0-cp39-cp39-macosx_14_0_arm64.whl (5.9 MB view details)

Uploaded CPython 3.9 macOS 14.0+ ARM64

deepsearch_glm-0.21.0-cp39-cp39-macosx_13_0_x86_64.whl (6.3 MB view details)

Uploaded CPython 3.9 macOS 13.0+ x86-64

deepsearch_glm-0.21.0-cp39-cp39-macosx_13_0_arm64.whl (5.9 MB view details)

Uploaded CPython 3.9 macOS 13.0+ ARM64

File details

Details for the file deepsearch_glm-0.21.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for deepsearch_glm-0.21.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 117b0556e2a36582590d5627582265498bff66dae74658a67a02ef3a76956e34
MD5 9e0e2f1ba8551ea36a784f4d8c41147d
BLAKE2b-256 7d3c6ef370fbdc7550593d006ed9857eaf64dd87e0aa9d8c5fc1b479d72c0f14

See more details on using hashes here.

Provenance

File details

Details for the file deepsearch_glm-0.21.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for deepsearch_glm-0.21.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4273fbda4cb25e949776ff81f60dde2ae278cab94a67babe7fab024f98dce993
MD5 80e0379086e8a97999dcf8207fe0cc6f
BLAKE2b-256 24ba74b120fff04b6c90aa964bb7f19a3383e07ef006f1cbd28a97041e5628db

See more details on using hashes here.

Provenance

File details

Details for the file deepsearch_glm-0.21.0-cp312-cp312-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for deepsearch_glm-0.21.0-cp312-cp312-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 b2c897bc2d57e0d21c86fe5706b5458d2a948e7016b26730f4e04a892f12d690
MD5 4e8f3999cb87a2644a9637f40ee870db
BLAKE2b-256 e385d7dd5277611fc1ddc69ee77e40e94d0efc54c9c92cd176ba69209cb5f8fd

See more details on using hashes here.

Provenance

File details

Details for the file deepsearch_glm-0.21.0-cp312-cp312-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for deepsearch_glm-0.21.0-cp312-cp312-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 4c823e59e934716ccd93df309a37d56a7e75cffac9831cffb9a9a560b84feadc
MD5 023fb994784ac99b9f53c1434d80bf64
BLAKE2b-256 e7657df29e1aea07f3ee4cdcabd5ee5687f2a405c289cf2e58d021715125ae1f

See more details on using hashes here.

Provenance

File details

Details for the file deepsearch_glm-0.21.0-cp312-cp312-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for deepsearch_glm-0.21.0-cp312-cp312-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 82a32f996f398425d62de3681ff7568ef18b9e0a8900c52ac9a780341f169073
MD5 83792ef74f0b0bd7dfbd12213a371b82
BLAKE2b-256 d8d205cb5c0675849e8f99fcee32ea9fd53ace27ffe2409a16e55136cbd89631

See more details on using hashes here.

Provenance

File details

Details for the file deepsearch_glm-0.21.0-cp312-cp312-macosx_13_0_arm64.whl.

File metadata

File hashes

Hashes for deepsearch_glm-0.21.0-cp312-cp312-macosx_13_0_arm64.whl
Algorithm Hash digest
SHA256 d74caa7336d256c8091af4db99f2d5bd6f7cd9c9448b9a210e5512de67eaef54
MD5 5a369aa50d76a170b89bebd921accd0c
BLAKE2b-256 e7ef816d03da945920e9ff404a09a3eb9d7ba071f9cb3d00bb7cfc348786c676

See more details on using hashes here.

Provenance

File details

Details for the file deepsearch_glm-0.21.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for deepsearch_glm-0.21.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 86d97bc0c19672bee7723153b143f3e6f65d97497a22b4da19488aab5224f77f
MD5 4fa4aba1f1115f8a619d51ac72af59ee
BLAKE2b-256 7aa2fae8be24b87eaa28c076344ef8dd86f8a45631949ea698499b4cedfbfe67

See more details on using hashes here.

Provenance

File details

Details for the file deepsearch_glm-0.21.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for deepsearch_glm-0.21.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1a7dcd0fe3911df1821e343946e24443126d3cf6e7b6c13d7dfdd437fdaf013a
MD5 e1bd0a3936b1f97e309af534b2baa0f0
BLAKE2b-256 73ee5a4b238a21083fabf69d0ef17dcf62108f8a18b430bec8e17e8ce5f92b55

See more details on using hashes here.

Provenance

File details

Details for the file deepsearch_glm-0.21.0-cp311-cp311-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for deepsearch_glm-0.21.0-cp311-cp311-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 f8846f9228065a89a0438453b067815f7ac28753217912b944d28ca0d68fae6a
MD5 254a26d0205ecb6f7810da92d0439287
BLAKE2b-256 753aeef31e69576ada55b003e56628038b462729f799dae1b834f295a174a940

See more details on using hashes here.

Provenance

File details

Details for the file deepsearch_glm-0.21.0-cp311-cp311-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for deepsearch_glm-0.21.0-cp311-cp311-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 e69001e9b64ea5d45fd3e03ec7612f531ebcb0eee6f574cbe4976598d78ede3c
MD5 cb16df8a91c4fdcc30b0a10dc4d5b986
BLAKE2b-256 4f0a7896126add6abea7e556f6dd5f305956e13b317bee33e497a73a1b5fbe84

See more details on using hashes here.

Provenance

File details

Details for the file deepsearch_glm-0.21.0-cp311-cp311-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for deepsearch_glm-0.21.0-cp311-cp311-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 ba0cf927f4e9f2553e94349e29c07b4505b94deafa55cb65a19457ff83b8dc9e
MD5 1c21e2977d51f0329bfdab544cda31f4
BLAKE2b-256 4ecc487fe3bc802fe231bef54c0f7b10bb3a92888409da839fb47b8fe56ee660

See more details on using hashes here.

Provenance

File details

Details for the file deepsearch_glm-0.21.0-cp311-cp311-macosx_13_0_arm64.whl.

File metadata

File hashes

Hashes for deepsearch_glm-0.21.0-cp311-cp311-macosx_13_0_arm64.whl
Algorithm Hash digest
SHA256 7fc8c07002ff8ade6deb1dc6d6bd3d07371433aa242cbc02c20349764b23269a
MD5 181b7c3fdbe166f67535b50478ceeecf
BLAKE2b-256 df9a189989fed1f0e940aae3948dc5b4b9c6c6ba1422a1ee2be42703189193cc

See more details on using hashes here.

Provenance

File details

Details for the file deepsearch_glm-0.21.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for deepsearch_glm-0.21.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2605a90146336f9cff2659d90f3dc9eea52a08b72ef8da211323b197ae61c557
MD5 4deef5b2436f0ba38850dc058158b75b
BLAKE2b-256 63d54a09e5a75534d7095538d30357a51df57b964e8411650e0769c03d2384f8

See more details on using hashes here.

Provenance

File details

Details for the file deepsearch_glm-0.21.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for deepsearch_glm-0.21.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4e721314ee7b9d7ce9303d38f4038e33758a55b004691e32a5821818c1f42aff
MD5 9dec56fd4aaad9ec84ecee3050f5897b
BLAKE2b-256 8c27980e8607789926786366e567697e2f8df2bf20d35cf4dff6d3cb02e24998

See more details on using hashes here.

Provenance

File details

Details for the file deepsearch_glm-0.21.0-cp310-cp310-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for deepsearch_glm-0.21.0-cp310-cp310-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 ff5a7aa3ed12b1ad8f8cb290851d4ddeb87d3f486ac9a1e90f13d69ff40233e1
MD5 87e78d1d09c2ba8d149182f42e865e20
BLAKE2b-256 bc9045017859638451086bbea1356333567b7c9c812d7d23dc262276c3dd5451

See more details on using hashes here.

Provenance

File details

Details for the file deepsearch_glm-0.21.0-cp310-cp310-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for deepsearch_glm-0.21.0-cp310-cp310-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 05bfde0f2bea6f235deb66093c1553248374914bc793f6f1823e632d2da1a625
MD5 60b4718a96b0285debc16a5d94335499
BLAKE2b-256 f3b09a6e564f721c01216d74a542e65ee230c62537210247935f0ed6fe2e1e10

See more details on using hashes here.

Provenance

File details

Details for the file deepsearch_glm-0.21.0-cp310-cp310-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for deepsearch_glm-0.21.0-cp310-cp310-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 27561630487dc331c30238f94b5f00b4e5e1359bcd120ee7e5d9f9e3b4d824a1
MD5 3f83e9f4b7c2a7622df858502f0623a2
BLAKE2b-256 5451cdf6fad089a1532af31ade61eeeeab2c0276de6ef6a2fd7cd380d7312a1d

See more details on using hashes here.

Provenance

File details

Details for the file deepsearch_glm-0.21.0-cp310-cp310-macosx_13_0_arm64.whl.

File metadata

File hashes

Hashes for deepsearch_glm-0.21.0-cp310-cp310-macosx_13_0_arm64.whl
Algorithm Hash digest
SHA256 a07f9ee8b9532f2f02ce363fefd4622178552032e2de8e4f540cab16852b3d6d
MD5 d66a9ed6f5dd20c70b7fb9830d012549
BLAKE2b-256 5fbf08366323954a9287f760943bf6cb62e1194d637e78140ea0758d670ca13f

See more details on using hashes here.

Provenance

File details

Details for the file deepsearch_glm-0.21.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for deepsearch_glm-0.21.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b9f0b0cbd2f773558f79d356603f1d49d913e52c8f9b5610b4603480df3c5804
MD5 bc3abeeab0abb13e522754c348bb7b44
BLAKE2b-256 0415ae4e754d993b1294e4793ab72e6545f5f643ee78ca714dcfc81c18486e6b

See more details on using hashes here.

Provenance

File details

Details for the file deepsearch_glm-0.21.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for deepsearch_glm-0.21.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c1dd273c950877fb40d538ba16724efdedb82f3c9f15f9fc4407b9d60a832490
MD5 c5f4a18d944dd6a18301acaae9e03946
BLAKE2b-256 8b7e73ac0aa85ee2218bb1c2c50fc42623e56e04c3cc8deaeb00f5c49abc8e35

See more details on using hashes here.

Provenance

File details

Details for the file deepsearch_glm-0.21.0-cp39-cp39-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for deepsearch_glm-0.21.0-cp39-cp39-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 3802436d610c6e24a0ea9291a2cdee9c260fd4492438af08041ed460e3f92743
MD5 495df94c7907edc658378ce380782158
BLAKE2b-256 948aa3e3cfce23f5f1c2730404e7d9ed4865ed138414f5bfb6be5ca5b30215b6

See more details on using hashes here.

Provenance

File details

Details for the file deepsearch_glm-0.21.0-cp39-cp39-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for deepsearch_glm-0.21.0-cp39-cp39-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 a49c63cef72c32b63a10fc85589721bf82580a8a42cfe0a5c901798f4d161fbf
MD5 e2c1129e380561983f5dc22b628b4d6a
BLAKE2b-256 5c1375139c180784ce222bd72d57219051efa982b6f513c926c7c95bcbc30498

See more details on using hashes here.

Provenance

File details

Details for the file deepsearch_glm-0.21.0-cp39-cp39-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for deepsearch_glm-0.21.0-cp39-cp39-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 197ca6dc60330ff90c90dc85507899307353a2a0620db40ee825e632644c99c5
MD5 26da1c1e7d021baf1709482173d94365
BLAKE2b-256 84eaf6f315b2ca86b71ecabd055143cf785dfa382a8e2cdbbe8f568d5f5ad212

See more details on using hashes here.

Provenance

File details

Details for the file deepsearch_glm-0.21.0-cp39-cp39-macosx_13_0_arm64.whl.

File metadata

File hashes

Hashes for deepsearch_glm-0.21.0-cp39-cp39-macosx_13_0_arm64.whl
Algorithm Hash digest
SHA256 2ba54efd3661d7196f0a9828ebf642cb21bc2bd0594915e0486bd50b2ec0632c
MD5 f5d6394e48d92ea56d9c0c453872637f
BLAKE2b-256 3662b70bf598e979a32b4bb9fe87401ee9a9328b2a35f547a45851eadbba91da

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page