A tool to Depict Vocabulary Summaries
Project description
DeVoS
Depicting Vocabulary Summaries(DeVoS) is a tool that generates a visual summary from a given ontology. DeVoS is built on top of Mermaid syntax which is a Markdown-inspired tool that renders text in diagrams and it uses SPARQL Query Language over the ontology generating a visual summary. It's based on three approaches.
- Ontology Meta Data
- Classes frequencies
- Label Length technique
Main Features
- Generate summary diagrams.
- Allows the user to use the summarisation technique (e.g., using meta data, class frequency, or label length)
- Enrich ontologies with labels for the classes that are missing them.
Dependencies
Tutorial
- Use meta data as the signal for importance
python -m devos.gister -i data/ieswc/cocoon.ttl --freq
python -m devos.gister -i data/ieswc_enriched/ck.ttl -t -d -a
python -m devos.gister -i data/ieswc_enriched/explanation-ontology.owl -t -d -a --topn 7
python -m devos.gister -i data/ieswc_enriched/devops/core.ttl --freq --topn 7
python -m devos.gister -i data/ieswc_enriched/devops/core.ttl --freq --topn 7
Example:
classDiagram
Agent --> Document :interest
Person --> Document :publications
Thing --> Document :page
Agent --> Thing :topic_interest
Thing --> Agent :maker
Group --> Agent :member
Experiment
Preprocessing
We perform ontology enrichment by adding labels from class names for the classes that do not have labels.
IESWC (ISWC and ESWC)
python -m experiments.enrich -i data/ieswc/* -o data/ieswc_enriched
;
python -m experiments.enrich -i data/ieswc/devops/* -o data/ieswc_enriched/devops
Run the experiment
From Ontology Meta data (OntMet)
- To only use
owl:ObjectPropertywhen getting the relevant properties to the given meta
Top in Lov
python -m experiments.generate_diagrams -i data/Top_in_lov/* -o output/Top_in_lov_object_property --object-property
- To use all properties when getting the relevant properties to the given meta
python -m experiments.generate_diagrams -i data/Top_in_lov/* -o output/Top_in_lov_any_property
IESWC (ISWC and ESWC)
- Top 7 classes:
python -m experiments.generate_diagrams -i data/ieswc_enriched/* -o output/ieswc_meta --object-property --topn 7
python -m experiments.generate_diagrams -i data/ieswc_enriched/devops/* -o output/ieswc_meta --object-property --topn 7
- Top 7 classes 14 references:
python -m experiments.generate_diagrams -i data/ieswc_enriched/* -o output/ieswc_meta --object-property --topn 7 --topr 14
From Frequency
Top in Lov
-
Top 5:
python -m experiments.generate_diagrams -i data/Top_in_lov/* -o output/Top_in_lov_freq --object-property --freq --topn 5 -
Top 10:
python -m experiments.generate_diagrams -i data/Top_in_lov/* -o output/Top_in_lov_freq --object-property --freq --topn 10
IESWC (ISWC and ESWC)
- Top 7 classes:
python -m experiments.generate_diagrams -i data/ieswc_enriched/* -o output/ieswc_freq --object-property --freq --topn 7
Top 7 classes from devops: python -m experiments.generate_diagrams -i data/ieswc_enriched/devops/* -o output/ieswc_freq --object-property --freq --topn 7
-
Top 7 classes and 14 relations:
python -m experiments.generate_diagrams -i data/ieswc_enriched/* -o output/ieswc_freq --object-property --freq --topn 7 --topr 14 -
Top 10 classes:
python -m experiments.generate_diagrams -i data/ieswc_enriched/* -o output/ieswc_freq --object-property --freq --topn 10
Label Length
IESWC (ISWC and ESWC)
- Top 7 classes:
python -m experiments.generate_diagrams -i data/ieswc_enriched/* -o output/ieswc_leng --leng --topn 7
Top 7 classes from devops: python -m experiments.generate_diagrams -i data/ieswc_enriched/devops/* -o output/ieswc_leng --leng --topn 7
-
Top 7 classes and 14 relations:
python -m experiments.generate_diagrams -i data/ieswc_enriched/* -o output/ieswc_leng --leng --topn 7 --topr 14 -
Top 10:
python -m experiments.generate_diagrams -i data/ieswc_enriched/* -o output/ieswc_leng --leng --topn 10
Generate Statistics
About the number of classes properties to stats.csv
python -m experiments.analytics
Tests
To run unit tests
python -m unittest discover tests
Authors
- Ahmad Alobaid - (Ontology Engineering Group - UPM)
- Jhon Toledo - (Ontology Engineering Group - UPM)
- [María Poveda Villalón] - (Ontology Engineering Group - UPM)
- [Oscar Corcho] - (Ontology Engineering Group - UPM)
Ontology Engineering Group, Universidad Politécnica de Madrid.
License
DeVoS is available under the permissive Apache License 2.0.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Filter files by name, interpreter, ABI, and platform.
If you're not sure about the file name format, learn more about wheel file names.
Copy a direct link to the current filters
File details
Details for the file devos-py-1.0.0.tar.gz.
File metadata
- Download URL: devos-py-1.0.0.tar.gz
- Upload date:
- Size: 24.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.9
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
c4ed3c8f3b4d0111546d01d281bde1b0f2a548f4a6ff7989347cfe5a2efdba13
|
|
| MD5 |
7bdbbd728dd8a2b7ec8752664d16537b
|
|
| BLAKE2b-256 |
166814c5f288b2788b246e0635c5b0dc73d38c7a74bf2468f67a8322b385c7b2
|
File details
Details for the file devos_py-1.0.0-py3-none-any.whl.
File metadata
- Download URL: devos_py-1.0.0-py3-none-any.whl
- Upload date:
- Size: 22.8 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.9
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
314fb516e5d75dea687b9541576c62ccecbfad179ac0bb49fc9eb84d5e4a58e4
|
|
| MD5 |
ed75d552fe2cc0eac6b69fa52db4257e
|
|
| BLAKE2b-256 |
41bd39ab2d0467749257d6e68188b30c21dc8684b9ceba230b388fa8c5058131
|