Skip to main content

A CascadeForestClassifier extension of AutoSklearn classifier

Project description

Deep Forest for Auto-Sklearn

Extension of AutoSklearnClassifier with DF21 - CascadeForestClassifier - a Deep Forest implementantion. Based on an example extension from Auto-Sklearn documentation.

Requirements

  • Linux operating system (requirement of Auto-Sklearn)
  • numpy version <= 1.19
  • installation of CascadeForestClassifier
  • installation of Auto-Sklearn
  • input variables have to be converted to numeric without missing values
  • output variables also should be converted to numeric values (you can use sklearn LabelEncoder)

Example use

# import libraries
import sklearn.metrics
import autosklearn.classification
import autosklearn.pipeline.components.classification


# import DFClassifier
from df_autosk.df_autosk import DFClassifier

# add DFClassifier to autosklearn classifier
autosklearn.pipeline.components.classification.add_classifier(DFClassifier)

# initialize and get hyperparameter search space
cs = DFClassifier.get_hyperparameter_search_space()
print(cs)

# load the dataset
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_breast_cancer
X, y = load_breast_cancer(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

# use the classifier
clf = autosklearn.classification.AutoSklearnClassifier(
        	time_left_for_this_task=5400,
        	include={"classifier": ['DFClassifier']},
        	initial_configurations_via_metalearning=0,
        	memory_limit = 102400,
                # Not recommended for a real implementation
               	smac_scenario_args={"runcount_limit": 2}
                )

clf.fit(X_train, y_train)

#get result
y_pred = clf.predict(X_test)
print("accuracy: ", sklearn.metrics.accuracy_score(y_pred, y_test))

Example based on an example extension from Auto-Sklearn documentation.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

df_autosk-0.0.4.tar.gz (4.4 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

df_autosk-0.0.4-py3-none-any.whl (4.9 kB view details)

Uploaded Python 3

File details

Details for the file df_autosk-0.0.4.tar.gz.

File metadata

  • Download URL: df_autosk-0.0.4.tar.gz
  • Upload date:
  • Size: 4.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.2

File hashes

Hashes for df_autosk-0.0.4.tar.gz
Algorithm Hash digest
SHA256 d83e425ce808c3423d38ec8186446765f4fd9627eeb425fe06e2cfed83138fa1
MD5 2e85d18802f6325726a43a6f42832f71
BLAKE2b-256 b345fa569560dda4edaa3ba595c44b340b42e446569aaa2fdff4f002124b8cc4

See more details on using hashes here.

File details

Details for the file df_autosk-0.0.4-py3-none-any.whl.

File metadata

  • Download URL: df_autosk-0.0.4-py3-none-any.whl
  • Upload date:
  • Size: 4.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.2

File hashes

Hashes for df_autosk-0.0.4-py3-none-any.whl
Algorithm Hash digest
SHA256 a7957bf4e831542448ec755087e3040d0b5678217f6b22b224c52628b375af39
MD5 d11f8a6ff3ede555a3e2b240b8fed8f2
BLAKE2b-256 1e25722c593730defe1467fdcc72b1180722b1be11f088466d5decfaedbdb5df

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page