A CascadeForestClassifier extension of AutoSklearn classifier
Project description
Deep Forest for Auto-Sklearn
Extension of AutoSklearnClassifier with DF21 - CascadeForestClassifier - a Deep Forest implementantion. Based on an example extension from Auto-Sklearn documentation.
Requirements
- Linux operating system (requirement of Auto-Sklearn)
- numpy version <= 1.19
- installation of CascadeForestClassifier
- installation of Auto-Sklearn
- input variables have to be converted to numeric without missing values
- output variables also should be converted to numeric values (you can use sklearn LabelEncoder)
Example use
# import libraries
import sklearn.metrics
import autosklearn.classification
import autosklearn.pipeline.components.classification
# import DFClassifier
from df_autosk.df_autosk import DFClassifier
# add DFClassifier to autosklearn classifier
autosklearn.pipeline.components.classification.add_classifier(DFClassifier)
# initialize and get hyperparameter search space
cs = DFClassifier.get_hyperparameter_search_space()
print(cs)
# load the dataset
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_breast_cancer
X, y = load_breast_cancer(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
# use the classifier
clf = autosklearn.classification.AutoSklearnClassifier(
time_left_for_this_task=5400,
include={"classifier": ['DFClassifier']},
initial_configurations_via_metalearning=0,
memory_limit = 102400,
# Not recommended for a real implementation
smac_scenario_args={"runcount_limit": 2}
)
clf.fit(X_train, y_train)
#get result
y_pred = clf.predict(X_test)
print("accuracy: ", sklearn.metrics.accuracy_score(y_pred, y_test))
Example based on an example extension from Auto-Sklearn documentation.
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Filter files by name, interpreter, ABI, and platform.
If you're not sure about the file name format, learn more about wheel file names.
Copy a direct link to the current filters
File details
Details for the file df_autosk-0.0.4.tar.gz.
File metadata
- Download URL: df_autosk-0.0.4.tar.gz
- Upload date:
- Size: 4.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.2
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
d83e425ce808c3423d38ec8186446765f4fd9627eeb425fe06e2cfed83138fa1
|
|
| MD5 |
2e85d18802f6325726a43a6f42832f71
|
|
| BLAKE2b-256 |
b345fa569560dda4edaa3ba595c44b340b42e446569aaa2fdff4f002124b8cc4
|
File details
Details for the file df_autosk-0.0.4-py3-none-any.whl.
File metadata
- Download URL: df_autosk-0.0.4-py3-none-any.whl
- Upload date:
- Size: 4.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.2
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
a7957bf4e831542448ec755087e3040d0b5678217f6b22b224c52628b375af39
|
|
| MD5 |
d11f8a6ff3ede555a3e2b240b8fed8f2
|
|
| BLAKE2b-256 |
1e25722c593730defe1467fdcc72b1180722b1be11f088466d5decfaedbdb5df
|