Skip to main content

Python API of the DFT-D3 project

Project description

Python interface for the D3 dispersion model. This Python project is targeted at developers who want to interface their project via Python with s-dftd3.

This interface provides access to the C-API of s-dftd3 via the CFFI module. The low-level CFFI interface is available in the dftd3.libdftd3 module and only required for implementing other interfaces. A more pythonic interface is provided in the dftd3.interface module which can be used to build more specific interfaces.

from dftd3.interface import RationalDampingParam, DispersionModel
import numpy as np
numbers = np.array([1, 1, 6, 5, 1, 15, 8, 17, 13, 15, 5, 1, 9, 15, 1, 15])
positions = np.array([  # Coordinates in Bohr
    [+2.79274810283778, +3.82998228828316, -2.79287054959216],
    [-1.43447454186833, +0.43418729987882, +5.53854345129809],
    [-3.26268343665218, -2.50644032426151, -1.56631149351046],
    [+2.14548759959147, -0.88798018953965, -2.24592534506187],
    [-4.30233097423181, -3.93631518670031, -0.48930754109119],
    [+0.06107643564880, -3.82467931731366, -2.22333344469482],
    [+0.41168550401858, +0.58105573172764, +5.56854609916143],
    [+4.41363836635653, +3.92515871809283, +2.57961724984000],
    [+1.33707758998700, +1.40194471661647, +1.97530004949523],
    [+3.08342709834868, +1.72520024666801, -4.42666116106828],
    [-3.02346932078505, +0.04438199934191, -0.27636197425010],
    [+1.11508390868455, -0.97617412809198, +6.25462847718180],
    [+0.61938955433011, +2.17903547389232, -6.21279842416963],
    [-2.67491681346835, +3.00175899761859, +1.05038813614845],
    [-4.13181080289514, -2.34226739863660, -3.44356159392859],
    [+2.85007173009739, -2.64884892757600, +0.71010806424206],
])
model = DispersionModel(numbers, positions)
res = model.get_dispersion(RationalDampingParam(method="pbe0"), grad=False)
print(res.get("energy"))  # Results in atomic units
# => -0.029489232932494884

QCSchema Integration

This Python API natively understands QCSchema and the QCArchive infrastructure. If the QCElemental package is installed the dftd3.qcschema module becomes importable and provides the run_qcschema function.

from dftd3.qcschema import run_qcschema
import qcelemental as qcel
atomic_input = qcel.models.AtomicInput(
    molecule = qcel.models.Molecule(
        symbols = ["O", "H", "H"],
        geometry = [
            0.00000000000000,  0.00000000000000, -0.73578586109551,
            1.44183152868459,  0.00000000000000,  0.36789293054775,
           -1.44183152868459,  0.00000000000000,  0.36789293054775
        ],
    ),
    driver = "energy",
    model = {
        "method": "tpss",
    },
    keywords = {
        "level_hint": "d3bj",
    },
)

atomic_result = run_qcschema(atomic_input)
print(atomic_result.return_result)
# => -0.0004204244108151285

ASE Integration

To integrate with ASE this interface implements an ASE Calculator. The DFTD3 calculator becomes importable if an ASE installation is available.

>>> from ase.build import molecule
>>> from dftd3.ase import DFTD3
>>> atoms = molecule('H2O')
>>> atoms.calc = DFTD3(method="TPSS", damping="d3bj")
>>> atoms.get_potential_energy()
-0.0114416338147162
>>> atoms.calc.set(method="PBE")
{'method': 'PBE'}
>>> atoms.get_potential_energy()
-0.009781913226281063
>>> atoms.get_forces()
array([[-0.00000000e+00 -0.00000000e+00  9.56568982e-05]
       [-0.00000000e+00 -4.06046858e-05 -4.78284491e-05]
       [-0.00000000e+00  4.06046858e-05 -4.78284491e-05]])

To use the DFTD3 calculator as dispersion correction the calculator can be combined using the SumCalculator from the ase.calculators.mixing module.

>>> from ase.build import molecule
>>> from ase.calculators.mixing import SumCalculator
>>> from ase.calculators.nwchem import NWChem
>>> from dftd3.ase import DFTD3
>>> atoms = molecule('H2O')
>>> atoms.calc = SumCalculator([DFTD3(method="PBE", damping="d3bj"), NWChem(xc="PBE")])

For convenience DFTD3 allows to combine itself with another calculator by using the add_calculator method which returns a SumCalculator:

>>> from ase.build import molecule
>>> from ase.calculators.emt import EMT
>>> from dftd4.ase import DFTD3
>>> atoms = molecule("C60")
>>> atoms.calc = DFTD3(method="pbe", damping="d3bj").add_calculator(EMT())
>>> atoms.get_potential_energy()
7.513593999944228
>>> [calc.get_potential_energy() for calc in atoms.calc.calcs]
[-4.850025823367818, 12.363619823312046]

The individual contributions are available by iterating over the list of calculators in calc.calcs. Note that DFTD3 will always place itself as first calculator in the list.

PySCF support

Integration with PySCF is possible by using the dftd3.pyscf module. The module provides a DFTD3Dispersion class to construct a PySCF compatible calculator for evaluating the dispersion energy and gradients.

>>> from pyscf import gto
>>> import dftd3.pyscf as disp
>>> mol = gto.M(
...     atom="""
...          C   -0.189833176  -0.645396435   0.069807761
...          C    1.121636324  -0.354065576   0.439096514
...          C    1.486520953   0.962572632   0.712107225
...          C    0.549329390   1.989209324   0.617868956
...          C   -0.757627135   1.681862630   0.246856908
...          C   -1.138190460   0.370551816  -0.028582325
...          Br  -2.038462778   3.070459841   0.115165429
...          H    1.852935245  -1.146434699   0.514119204
...          H    0.825048723   3.012176989   0.829385472
...          H    2.502259769   1.196433556   1.000317333
...          H   -2.157140187   0.151608161  -0.313181471
...          H   -0.480820487  -1.664983631  -0.142918416
...          S   -4.157443472   5.729584377  -0.878761129
...          H   -4.823791426   4.796089466  -1.563433338
...          C   -2.828338520   5.970593053  -2.091189515
...          H   -2.167577293   6.722356639  -1.668621815
...          H   -2.264954814   5.054835899  -2.240198499
...          H   -3.218524904   6.337447714  -3.035087058
...          """
... )
>>> d3 = disp.DFTD3Dispersion(mol, xc="PW6B95", version="d3bj")
>>> d3.kernel()[0]
array(-0.01009386)
>>> d3.version = "d3zero"  # Change to zero damping
>>> d3.kernel()[0]
array(-0.00574098)
>>> d3.atm = True  # Activate three-body dispersion
>>> d3.kernel()[0]
array(-0.00574289)

To make use of the dispersion correction together with other calculators, the energy method allows to apply a dispersion correction to an existing calculator.

>>> from pyscf import gto, scf
>>> import dftd3.pyscf as disp
>>> mol = gto.M(
...     atom="""
...          O  -1.65542061  -0.12330038   0.00000000
...          O   1.24621244   0.10268870   0.00000000
...          H  -0.70409026   0.03193167   0.00000000
...          H  -2.03867273   0.75372294   0.00000000
...          H   1.57598558  -0.38252146  -0.75856129
...          H   1.57598558  -0.38252146   0.75856129
...          """
... )
>>> grad = disp.energy(scf.RHF(mol)).run().nuc_grad_method()
converged SCF energy = -149.947191000075
>>> g = grad.kernel()
--------------- DFTD3 gradients ---------------
         x                y                z
0 O     0.0171886976     0.0506606246     0.0000000000
1 O     0.0383596853    -0.0459057549     0.0000000000
2 H    -0.0313133974    -0.0125865676    -0.0000000000
3 H     0.0066705789    -0.0380501872     0.0000000000
4 H    -0.0154527822     0.0229409425     0.0215141991
5 H    -0.0154527822     0.0229409425    -0.0215141991
----------------------------------------------

Installing

Conda Version

This project is packaged for the conda package manager and available on the conda-forge channel. To install the conda package manager we recommend the miniforge installer. If the conda-forge channel is not yet enabled, add it to your channels with

conda config --add channels conda-forge

Once the conda-forge channel has been enabled, this project can be installed with:

conda install dftd3-python

Now you are ready to use dftd3, check if you can import it with

>>> import dftd3
>>> from dftd3.libdftd3 import get_api_version
>>> get_api_version()
'1.2.1'

Building the extension module

To perform an out-of-tree build some version of s-dftd3 has to be available on your system and preferably findable by pkg-config. Try to find a s-dftd3 installation you build against first with

pkg-config --modversion s-dftd3

Adjust the PKG_CONFIG_PATH environment variable to include the correct directories to find the installation if necessary.

Using pip

PyPI

This project support installation with pip as an easy way to build the Python API. Precompiled Python wheels for Linux are available on pypi and can be installed with

pip install dftd3

Other platforms need to build from source, the following dependencies are required to do so

  • C compiler to build the C-API and compile the extension module (the compiler name should be exported in the CC environment variable)

  • Python 3.6 or newer

  • The following Python packages are required additionally

Make sure to have your C compiler set to the CC environment variable

export CC=gcc

Install the project with pip

pip install .

If you already have a s-dftd3 installation, e.g. from conda-forge, you can build the Python extension module directly without cloning this repository

pip install "https://github.com/dftd3/simple-dftd3/archive/refs/heads/main.zip#egg=dftd3-python&subdirectory=python"

Using meson

This directory contains a separate meson build file to allow the out-of-tree build of the CFFI extension module. The out-of-tree build requires

  • C compiler to build the C-API and compile the extension module

  • meson version 0.53 or newer

  • a build-system backend, i.e. ninja version 1.7 or newer

  • Python 3.6 or newer with the CFFI package installed

Setup a build with

meson setup _build -Dpython_version=$(which python3)

The Python version can be used to select a different Python version, it defaults to 'python3'. Python 2 is not supported with this project, the Python version key is meant to select between several local Python 3 versions.

Compile the project with

meson compile -C _build

The extension module is now available in _build/dftd3/_libdftd3.*.so. You can install as usual with

meson configure _build --prefix=/path/to/install
meson install -C _build

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dftd3-1.2.1.tar.gz (671.7 kB view details)

Uploaded Source

Built Distributions

dftd3-1.2.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

dftd3-1.2.1-pp310-pypy310_pp73-macosx_14_0_arm64.whl (1.3 MB view details)

Uploaded PyPy macOS 14.0+ ARM64

dftd3-1.2.1-pp310-pypy310_pp73-macosx_12_0_x86_64.whl (2.0 MB view details)

Uploaded PyPy macOS 12.0+ x86-64

dftd3-1.2.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

dftd3-1.2.1-pp39-pypy39_pp73-macosx_14_0_arm64.whl (1.3 MB view details)

Uploaded PyPy macOS 14.0+ ARM64

dftd3-1.2.1-pp39-pypy39_pp73-macosx_12_0_x86_64.whl (2.0 MB view details)

Uploaded PyPy macOS 12.0+ x86-64

dftd3-1.2.1-pp38-pypy38_pp73-win_amd64.whl (1.9 MB view details)

Uploaded PyPy Windows x86-64

dftd3-1.2.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

dftd3-1.2.1-pp38-pypy38_pp73-macosx_12_0_x86_64.whl (2.0 MB view details)

Uploaded PyPy macOS 12.0+ x86-64

dftd3-1.2.1-cp313-cp313-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.13 Windows x86-64

dftd3-1.2.1-cp313-cp313-musllinux_1_2_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ x86-64

dftd3-1.2.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ x86-64

dftd3-1.2.1-cp313-cp313-macosx_14_0_arm64.whl (1.3 MB view details)

Uploaded CPython 3.13 macOS 14.0+ ARM64

dftd3-1.2.1-cp313-cp313-macosx_12_0_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.13 macOS 12.0+ x86-64

dftd3-1.2.1-cp312-cp312-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.12 Windows x86-64

dftd3-1.2.1-cp312-cp312-musllinux_1_2_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

dftd3-1.2.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

dftd3-1.2.1-cp312-cp312-macosx_14_0_arm64.whl (1.3 MB view details)

Uploaded CPython 3.12 macOS 14.0+ ARM64

dftd3-1.2.1-cp312-cp312-macosx_12_0_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.12 macOS 12.0+ x86-64

dftd3-1.2.1-cp311-cp311-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.11 Windows x86-64

dftd3-1.2.1-cp311-cp311-musllinux_1_2_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

dftd3-1.2.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

dftd3-1.2.1-cp311-cp311-macosx_14_0_arm64.whl (1.3 MB view details)

Uploaded CPython 3.11 macOS 14.0+ ARM64

dftd3-1.2.1-cp311-cp311-macosx_12_0_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.11 macOS 12.0+ x86-64

dftd3-1.2.1-cp310-cp310-musllinux_1_2_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

dftd3-1.2.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

dftd3-1.2.1-cp310-cp310-macosx_14_0_arm64.whl (1.3 MB view details)

Uploaded CPython 3.10 macOS 14.0+ ARM64

dftd3-1.2.1-cp310-cp310-macosx_12_0_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.10 macOS 12.0+ x86-64

dftd3-1.2.1-cp39-cp39-musllinux_1_2_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ x86-64

dftd3-1.2.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

dftd3-1.2.1-cp39-cp39-macosx_14_0_arm64.whl (1.3 MB view details)

Uploaded CPython 3.9 macOS 14.0+ ARM64

dftd3-1.2.1-cp39-cp39-macosx_12_0_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.9 macOS 12.0+ x86-64

dftd3-1.2.1-cp38-cp38-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.8 Windows x86-64

dftd3-1.2.1-cp38-cp38-musllinux_1_2_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ x86-64

dftd3-1.2.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

dftd3-1.2.1-cp38-cp38-macosx_12_0_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.8 macOS 12.0+ x86-64

File details

Details for the file dftd3-1.2.1.tar.gz.

File metadata

  • Download URL: dftd3-1.2.1.tar.gz
  • Upload date:
  • Size: 671.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for dftd3-1.2.1.tar.gz
Algorithm Hash digest
SHA256 7563fef4f7d26231dd626f363ac60cd089750b1785d030344659f3809f424f0f
MD5 0494ff5d1172b5bfa03795285ec46317
BLAKE2b-256 6fc0d50f5b67e404c305a414a972abbf26f992f451f16a101c2b4ed8826e9af0

See more details on using hashes here.

File details

Details for the file dftd3-1.2.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for dftd3-1.2.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2114a33e477fa0fecb8c5a632673da2502066585fd13bc5af98dc182067b7c7e
MD5 95e8a2db591561f0c3549477c27a2d7a
BLAKE2b-256 dd3b28f44d0a5f55619e490aea5b67cd89470251142a8859615bef89e8a88baf

See more details on using hashes here.

File details

Details for the file dftd3-1.2.1-pp310-pypy310_pp73-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for dftd3-1.2.1-pp310-pypy310_pp73-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 d006a6cb204261cf7bf8a366b2f3d4a9ab5283e0de546e56eded49095a64541b
MD5 0210307b0b5fa73c97f2b4bff03acc01
BLAKE2b-256 b8cef120ece4f68e44e323982af2af34ae9aa11f2e58360812b9b1edc0be32a7

See more details on using hashes here.

File details

Details for the file dftd3-1.2.1-pp310-pypy310_pp73-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for dftd3-1.2.1-pp310-pypy310_pp73-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 2a8cb213b3dc41651adac81b89ff6a428940c1696f2e725b070acc82900d8cdc
MD5 c5fe9635514fd7deabc9a9dcae4f44ad
BLAKE2b-256 27c928a2a7c7e3fa2919bd172207ea02dda3746a34ea0abc29cb5aa1b2a0de72

See more details on using hashes here.

File details

Details for the file dftd3-1.2.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for dftd3-1.2.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d2d87fadfa546235c39421c063e49b5d7e671587df8f4bebfc578c2928a34620
MD5 0433de20c56f597c366e97035053ca8b
BLAKE2b-256 9f88317abe4f219829d5b4b981056bfe94cd4160aaaa1a388c55e2ab0df9e353

See more details on using hashes here.

File details

Details for the file dftd3-1.2.1-pp39-pypy39_pp73-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for dftd3-1.2.1-pp39-pypy39_pp73-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 1b4201a0911c2bd8a3550f89b5284bf3197ed4b0bc97e99e3d9d4c9cd08134f8
MD5 31011d84b58f9b5bf58382d789a521a7
BLAKE2b-256 dde2a1f07e73a45cd02159952d1df1368b1f0c3a9211d3d1ee8d8a0d55134bde

See more details on using hashes here.

File details

Details for the file dftd3-1.2.1-pp39-pypy39_pp73-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for dftd3-1.2.1-pp39-pypy39_pp73-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 c0b619c7f54c90dc6711ee8770622619ce4e6ed47457c9f65c88c42743f0fa1c
MD5 b1373b5c2970fb32f5653e192af091cb
BLAKE2b-256 255dcc68ed9f9b4974c86dd9e36b40b35473a7c15b9dcbfb2042c3d814ef9270

See more details on using hashes here.

File details

Details for the file dftd3-1.2.1-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for dftd3-1.2.1-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 e4fcbbcc44e0071a0d5e70d9591bad546f765b13c675800f1651e09365cd5b42
MD5 36b97efdf40f84b92f88c2e4e6493066
BLAKE2b-256 88af5ca91277f10afbef6b77386d03384173c58d151b7a507ce1e97e1c7a6566

See more details on using hashes here.

File details

Details for the file dftd3-1.2.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for dftd3-1.2.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 80570e8982a13e51dfe014042ba96d5026e92031575f0a6822edf6cf94f70bd7
MD5 cbe27b2d09c0cdeae36d2a5ba4e74423
BLAKE2b-256 cca227ca1c94bbf04261b6e7f1d3d196c67e67698bb2dc14a325e58aed1085c5

See more details on using hashes here.

File details

Details for the file dftd3-1.2.1-pp38-pypy38_pp73-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for dftd3-1.2.1-pp38-pypy38_pp73-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 7d30b4d78111507928e388309db2e6d16eabdec805d81818dda9ce77d9b26944
MD5 881ae827963a6be170e731f463f2f3ae
BLAKE2b-256 46725cb5f83767919d4696b89e2936c63d49b826404098f793d98c7b3183c2e7

See more details on using hashes here.

File details

Details for the file dftd3-1.2.1-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: dftd3-1.2.1-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for dftd3-1.2.1-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 e9906981a1b44af48393c8e9ec464ef18f44d795106b41a4c2dfcc2808f77916
MD5 d7251b246123f9d4025569841e147b1e
BLAKE2b-256 53db740522080d5e7e6a9a1bbcffb8668d7e9ecab9d8e3d6b85a71ee91f36e79

See more details on using hashes here.

File details

Details for the file dftd3-1.2.1-cp313-cp313-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for dftd3-1.2.1-cp313-cp313-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 8e3e3454106bca95fd623939662c8be80e2f795ce9313a703dcd13a04f87c97d
MD5 de01c4ab0926cd03d24405c50c372c37
BLAKE2b-256 610f03f6df81dd35f7e9a3ac6de9fc7181d0292d3727777c9406bebdb9566657

See more details on using hashes here.

File details

Details for the file dftd3-1.2.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for dftd3-1.2.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 58bf32c0cd5de99c8b23d8e46785bd311a989cb1f865640c22d1987f095ab0f4
MD5 b2f1115e9cc88ba4dbe88b06ed75b1db
BLAKE2b-256 909fee4f7b45c6672d95b09a88cbd8d18e5a6cfb2429422bb9bbede588ce42ba

See more details on using hashes here.

File details

Details for the file dftd3-1.2.1-cp313-cp313-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for dftd3-1.2.1-cp313-cp313-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 5db35e546928ca916150b318ae01d6b745a0fa074caaf6fae3f5fb7acc49883f
MD5 6393c496d3d91d0ffa0f28500ab44837
BLAKE2b-256 19844e1354cf49e06c0eb528b7c0ceab8fb106b577e5fbd1174885e1d0f73239

See more details on using hashes here.

File details

Details for the file dftd3-1.2.1-cp313-cp313-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for dftd3-1.2.1-cp313-cp313-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 084bb206fc7f5834109002c9ca62394b16f8bbf6d503205d4868a27ce3c5577c
MD5 2c05995e3825c345361e44eea35776d4
BLAKE2b-256 e28d3a724a7e0f277b0234b9395c4870b834a2c05f654ecd84a6b3b276e4b80e

See more details on using hashes here.

File details

Details for the file dftd3-1.2.1-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: dftd3-1.2.1-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for dftd3-1.2.1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 c8253d43dbcb1a4284e6e6678dbe5b560b2726911c6bf89c31b35181aad744eb
MD5 08220f102a2001433f47b2219fe886c5
BLAKE2b-256 45fc271c3676a57d1b89eb71dc9c28d68d2cf353f0052fca8a7e05b551d76f57

See more details on using hashes here.

File details

Details for the file dftd3-1.2.1-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for dftd3-1.2.1-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 510a2bb795a3b7003b7e8c8ea0612dbc71937e96c244463b7563ee71ff16970b
MD5 726461a42a4ad921e91256b262337873
BLAKE2b-256 e350feab0a120a676f8e871533b4238ddbe926ef5a3f3e49bfc21f5fe0ffc7ac

See more details on using hashes here.

File details

Details for the file dftd3-1.2.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for dftd3-1.2.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 81ba46e5b75b77fb8bc5b2fe175f7326f9b32eece659eb8d5725c85e7ff48c8e
MD5 375c2f564c62d71e506b735259c70d41
BLAKE2b-256 6760685f12c56e59f1e091c191fb0a418538b61e0c9220b54174e86be72c15e9

See more details on using hashes here.

File details

Details for the file dftd3-1.2.1-cp312-cp312-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for dftd3-1.2.1-cp312-cp312-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 157d98bf05ac156f96f3944e5ee1aef7dd941c41ff81c8c25e51f8ae0d44a998
MD5 90988ae876bf57c39fd51d555d6c532a
BLAKE2b-256 2da195aca30adb94c12ae50871a901956e5459f29215a54d1512f9e42483249a

See more details on using hashes here.

File details

Details for the file dftd3-1.2.1-cp312-cp312-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for dftd3-1.2.1-cp312-cp312-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 b171242191d1d98e3142ed0d4073bae3e5b850b554dfe6f6840f53e1b45e079a
MD5 3c7c13bf53043997f701ac84b6c1282b
BLAKE2b-256 ca5e3516b5b5c4d0b5d583262e21314d2f66c9dd1bd3721ab63b0d7b322c8ffa

See more details on using hashes here.

File details

Details for the file dftd3-1.2.1-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: dftd3-1.2.1-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for dftd3-1.2.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 c4d17b19c607ce6fbc35096df5499f1c7eec107c8d36b35229f01fa2cb281ccb
MD5 a07215b558526ef8b1b7567c00e6cc5c
BLAKE2b-256 f655b229fdaed66b9bb22fd217cf4b2616063a6115b7bc24312ef457c7f7ae5e

See more details on using hashes here.

File details

Details for the file dftd3-1.2.1-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for dftd3-1.2.1-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 a6cef6051d6334cad245518bf8819f0780af4e21abae401db0c904482997137a
MD5 a6d2f22edfb83efcf8952a51889e005f
BLAKE2b-256 f8de774e59dbcba0144ca1d6fbb5fc03bf7f3427a59687f27322f5512faf674f

See more details on using hashes here.

File details

Details for the file dftd3-1.2.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for dftd3-1.2.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4bcc585a2364438eb52ee9e7827953c26590362867469e9376651e90afaaf74c
MD5 59f6b8ed8e4ac3085e4930a28f253c6d
BLAKE2b-256 5e6bb9ba250638c1e1600ccedcfcd0ed16ffc949095c9fe380e6c9950aa41cd9

See more details on using hashes here.

File details

Details for the file dftd3-1.2.1-cp311-cp311-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for dftd3-1.2.1-cp311-cp311-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 6c2721b641ac8a33dc6825ad230e9efa3428254b6aeba043b215b2dd8ae97c3e
MD5 cba18e9d1631cac5eb8a852b7160b628
BLAKE2b-256 7dc16f5cbac62e633dd1ae5db8e6794ae2b9fc4fcb0efe9ff50b0386effda5ce

See more details on using hashes here.

File details

Details for the file dftd3-1.2.1-cp311-cp311-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for dftd3-1.2.1-cp311-cp311-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 487c128b054091a45783a6d53929b3ca54a4a1f4fa0869bdbb7d565dcb1cfefb
MD5 c6faaf0c00695b25f08bf9d9814f72e1
BLAKE2b-256 78d1be4b2bf529b1f1eccded88ca0e64032cc7b2c73a5db0b7950506a2cb60ff

See more details on using hashes here.

File details

Details for the file dftd3-1.2.1-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for dftd3-1.2.1-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 752acf382e902b692e215576ad473d6876d91e432471d5f1e3993660b0f7105e
MD5 9118f170bb3a7ee1ddddfbae198780dd
BLAKE2b-256 b1979a0d78b682c9fa6e83f130c3e4ad1e2564d0f2404a68c02bccd369cac3d0

See more details on using hashes here.

File details

Details for the file dftd3-1.2.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for dftd3-1.2.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bf9e1c64ca54a5ddbbd079cb238737a9f94ec32d7b37b399688946e4707bfad6
MD5 e3a7f46cc2016f87504ba3f9ce7868dc
BLAKE2b-256 75bb70a52be01bb8c7cc38cfdca892898a3315d5b634c0bf4a6d8218b5427461

See more details on using hashes here.

File details

Details for the file dftd3-1.2.1-cp310-cp310-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for dftd3-1.2.1-cp310-cp310-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 82a34562ce582281cf44063ce64d151895a8be3c6528c5d56f09fc36c908f712
MD5 b3c075cf79119a1e901b6e10797575ee
BLAKE2b-256 d76a11c039c6f7d1ab802e2c599bff80141a1d1cad9833c0ad9d5368b80d7be1

See more details on using hashes here.

File details

Details for the file dftd3-1.2.1-cp310-cp310-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for dftd3-1.2.1-cp310-cp310-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 2f538d6c7818e90423ee5e71ed97d3145272f75ff7435f1025004e87849d7892
MD5 b8beaa82337d401d8246092503c5bd85
BLAKE2b-256 4b6539eef215cce99fd6c21138835696598986479f838009ed42da88c413c75f

See more details on using hashes here.

File details

Details for the file dftd3-1.2.1-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for dftd3-1.2.1-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 920d58522a78d8b95fde3d5a8539b2849980a5dd6948def4d0a0f4c1d2d96c39
MD5 57ebc5801cdaae47f5b0d75d2a624cb2
BLAKE2b-256 013b301319f9e94ca584905e81db6043ddbfd1802572c57c26286977558a981b

See more details on using hashes here.

File details

Details for the file dftd3-1.2.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for dftd3-1.2.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f7dbd7a4f23c637fc7ec49893391c3368b44f38d7d86d30b994afa2431494ae2
MD5 b32a3e626b8ad8da3812b9cb0aa1571e
BLAKE2b-256 1451c22e986bb51ff6d59eaef49fe8747385cefad147e301b8ed2f7067214b35

See more details on using hashes here.

File details

Details for the file dftd3-1.2.1-cp39-cp39-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for dftd3-1.2.1-cp39-cp39-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 654be5b13c8660ee8706cd294564117f64289a0c8662c1c09dff76ddd07a35b7
MD5 366d6f49442dadbcce16064ebaea216b
BLAKE2b-256 2641b677093b7c81e61433bbaef3c802aa2ae32aa166f0a0497156b9632ecfb8

See more details on using hashes here.

File details

Details for the file dftd3-1.2.1-cp39-cp39-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for dftd3-1.2.1-cp39-cp39-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 0010a78723f3d4bdaf8e37834534255fed096778938f41309693e49794ad7a13
MD5 8de2d04294b567823f111d2cbec9fa3b
BLAKE2b-256 c9d275b191dd62efab61af892459d0979c43cc16e8e33650a633695a54fea680

See more details on using hashes here.

File details

Details for the file dftd3-1.2.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: dftd3-1.2.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for dftd3-1.2.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 a17e56858eb138c63aed5e571966c0721d45e1ac99f19689053abb1631b120cc
MD5 b3d71b838726b47dd56e7af81548b91b
BLAKE2b-256 c7f1f2b221057a8d6225a93d86322c13c716e855e0932c28308e19720203f45a

See more details on using hashes here.

File details

Details for the file dftd3-1.2.1-cp38-cp38-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for dftd3-1.2.1-cp38-cp38-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 26f07c440eb98c9aaa6a6da5c49d843e4fd27afb4a497f16ddc3356063500a7c
MD5 d9f51fdf8b8f6796ea0bb86ec5115933
BLAKE2b-256 c239987bb8da7a5e13dba757d02222ea0dfce8ee357dc260d87beddc99d0d1a2

See more details on using hashes here.

File details

Details for the file dftd3-1.2.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for dftd3-1.2.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 10f27c3bad0565c5f1d9a40a45ed2d7d7263f7755e2ce7a1ed7c23edc439f958
MD5 7b560216208f5822528b34f58c8e3815
BLAKE2b-256 aa7f2739f4b8e23cb076084d62efa5281d5e4d00f8e53b2ab75cfce19bce169d

See more details on using hashes here.

File details

Details for the file dftd3-1.2.1-cp38-cp38-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for dftd3-1.2.1-cp38-cp38-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 75be535ce51a73c08dd88f4388c3b2a0f5306168a2f21b957bf8a56864fafd51
MD5 04e786c1cb6593e5d076b8a956068d37
BLAKE2b-256 432b37e6e2ecb44d1a180c1a48039f9f91ed183ff99225fee65c33267f75dba4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page