Skip to main content

Python API of the DFT-D3 project

Project description

Python interface for the D3 dispersion model. This Python project is targeted at developers who want to interface their project via Python with s-dftd3.

This interface provides access to the C-API of s-dftd3 via the CFFI module. The low-level CFFI interface is available in the dftd3.libdftd3 module and only required for implementing other interfaces. A more pythonic interface is provided in the dftd3.interface module which can be used to build more specific interfaces.

from dftd3.interface import RationalDampingParam, DispersionModel
import numpy as np
numbers = np.array([1, 1, 6, 5, 1, 15, 8, 17, 13, 15, 5, 1, 9, 15, 1, 15])
positions = np.array([  # Coordinates in Bohr
    [+2.79274810283778, +3.82998228828316, -2.79287054959216],
    [-1.43447454186833, +0.43418729987882, +5.53854345129809],
    [-3.26268343665218, -2.50644032426151, -1.56631149351046],
    [+2.14548759959147, -0.88798018953965, -2.24592534506187],
    [-4.30233097423181, -3.93631518670031, -0.48930754109119],
    [+0.06107643564880, -3.82467931731366, -2.22333344469482],
    [+0.41168550401858, +0.58105573172764, +5.56854609916143],
    [+4.41363836635653, +3.92515871809283, +2.57961724984000],
    [+1.33707758998700, +1.40194471661647, +1.97530004949523],
    [+3.08342709834868, +1.72520024666801, -4.42666116106828],
    [-3.02346932078505, +0.04438199934191, -0.27636197425010],
    [+1.11508390868455, -0.97617412809198, +6.25462847718180],
    [+0.61938955433011, +2.17903547389232, -6.21279842416963],
    [-2.67491681346835, +3.00175899761859, +1.05038813614845],
    [-4.13181080289514, -2.34226739863660, -3.44356159392859],
    [+2.85007173009739, -2.64884892757600, +0.71010806424206],
])
model = DispersionModel(numbers, positions)
res = model.get_dispersion(RationalDampingParam(method="pbe0"), grad=False)
print(res.get("energy"))  # Results in atomic units
# => -0.029489232932494884

QCSchema Integration

This Python API natively understands QCSchema and the QCArchive infrastructure. If the QCElemental package is installed the dftd3.qcschema module becomes importable and provides the run_qcschema function.

from dftd3.qcschema import run_qcschema
import qcelemental as qcel
atomic_input = qcel.models.AtomicInput(
    molecule = qcel.models.Molecule(
        symbols = ["O", "H", "H"],
        geometry = [
            0.00000000000000,  0.00000000000000, -0.73578586109551,
            1.44183152868459,  0.00000000000000,  0.36789293054775,
           -1.44183152868459,  0.00000000000000,  0.36789293054775
        ],
    ),
    driver = "energy",
    model = {
        "method": "tpss",
    },
    keywords = {
        "level_hint": "d3bj",
    },
)

atomic_result = run_qcschema(atomic_input)
print(atomic_result.return_result)
# => -0.0004204244108151285

Installing

Conda Version

This project is packaged for the conda package manager and available on the conda-forge channel. To install the conda package manager we recommend the miniforge installer. If the conda-forge channel is not yet enabled, add it to your channels with

conda config --add channels conda-forge

Once the conda-forge channel has been enabled, this project can be installed with:

conda install dftd3-python

Now you are ready to use dftd3, check if you can import it with

>>> import dftd3
>>> from dftd3.libdftd3 import get_api_version
>>> get_api_version()
'0.6.0'

Building the extension module

To perform an out-of-tree build some version of s-dftd3 has to be available on your system and preferably findable by pkg-config. Try to find a s-dftd3 installation you build against first with

pkg-config --modversion s-dftd3

Adjust the PKG_CONFIG_PATH environment variable to include the correct directories to find the installation if necessary.

Using pip

This project support installation with pip as an easy way to build the Python API.

  • C compiler to build the C-API and compile the extension module (the compiler name should be exported in the CC environment variable)

  • Python 3.6 or newer

  • The following Python packages are required additionally

Make sure to have your C compiler set to the CC environment variable

export CC=gcc

Install the project with pip

pip install .

If you already have a s-dftd3 installation, e.g. from conda-forge, you can build the Python extension module directly without cloning this repository

pip install "https://github.com/awvwgk/simple-dftd3/archive/refs/heads/main.zip#egg=dftd3-python&subdirectory=python"

Using meson

This directory contains a separate meson build file to allow the out-of-tree build of the CFFI extension module. The out-of-tree build requires

  • C compiler to build the C-API and compile the extension module

  • meson version 0.53 or newer

  • a build-system backend, i.e. ninja version 1.7 or newer

  • Python 3.6 or newer with the CFFI package installed

Setup a build with

meson setup _build -Dpython_version=$(which python3)

The Python version can be used to select a different Python version, it defaults to 'python3'. Python 2 is not supported with this project, the Python version key is meant to select between several local Python 3 versions.

Compile the project with

meson compile -C _build

The extension module is now available in _build/dftd3/_libdftd3.*.so. You can install as usual with

meson configure _build --prefix=/path/to/install
meson install -C _build

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

dftd3-0.6.0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.12+ x86-64

dftd3-0.6.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.12+ x86-64

dftd3-0.6.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.12+ x86-64

dftd3-0.6.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.12+ x86-64

dftd3-0.6.0-cp36-cp36m-manylinux2010_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.6mmanylinux: glibc 2.12+ x86-64

File details

Details for the file dftd3-0.6.0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for dftd3-0.6.0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 13a29035c1a1ce761d687bac5141ab457dd5e02caf482a34a81b13924c81242b
MD5 f4b6a0ea844f680de3fa24f705b6a092
BLAKE2b-256 b0cac745e17878a219fbfe7a2cf3d4e6a4cfd779c1a93d826814cc58d7cd056d

See more details on using hashes here.

File details

Details for the file dftd3-0.6.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

  • Download URL: dftd3-0.6.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.63.2 CPython/3.10.4

File hashes

Hashes for dftd3-0.6.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 b76107d85dc57cf8d38e7ba8e9f91b75225a25b029f73c2b8d613ce3b4142527
MD5 e68003ccad60f7bfcac94b11683d8baf
BLAKE2b-256 7246ee26ce9e07456aff3a63bf3ad6dde5bba2269509cd5c7b1858b535e7622d

See more details on using hashes here.

File details

Details for the file dftd3-0.6.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

  • Download URL: dftd3-0.6.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.63.2 CPython/3.10.4

File hashes

Hashes for dftd3-0.6.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 9c2b0576845b111773619788a5765bf8c8178a68a3938f07e0a42e24cc87f501
MD5 7eeef4517c4625f75e35ef1610d2e474
BLAKE2b-256 b5f93add6c6138dd43be53059ed5bd496b620809ac7eb1973d7988439cf1bfab

See more details on using hashes here.

File details

Details for the file dftd3-0.6.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for dftd3-0.6.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 f59a34d007ddd0f4c27872c8da6f67b10ed7488ccc336d7ece1d4dba4de3d976
MD5 2b25e4ed62dd7435c08eb10de4e0acd5
BLAKE2b-256 8d6ca46933906019fc3a8c395f38e79eaa58caab24c023335d96c8ab8f63571d

See more details on using hashes here.

File details

Details for the file dftd3-0.6.0-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: dftd3-0.6.0-cp36-cp36m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.63.2 CPython/3.10.4

File hashes

Hashes for dftd3-0.6.0-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 295218c3fcbe10e49ce590bc25e75c4413b1ae364ed14d63b2ed0f5dc272c0f3
MD5 ddcbc1fdc8a326c613af782be0e9b654
BLAKE2b-256 510dbda4cfab8af7f27b29f79dcd10b0b0dd62bda576dfb2e75d8b2120d6e5aa

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page